Деаэраторы вакуумные в бункере. Совершенствование вакуумных деаэраторов

Все о печах и дымоходах

ООО «Волгопромэнерго» изготавливает вакуумные деаэраторы типа ДВ производительностью 5, 15, 25, т/ч. Они предназначены для дегазации добавочной воды энергетических котлов и подпиточной воды систем теплоснабжения на ТЭЦ и в котельных, главным образом, водогрейных.

Основная техническая характеристика вакуумных деаэраторов

На рис.1 представлена конструктивная схема струйно-баботажного вертикального вакуумного деаэратора производительностью 5-25 т/ч.

Вода, направляемая на дегазацию по трубе 1, попадает на верхнюю тарелку 6. Последняя секционирована с таким расчетом, что при минимальной (30%) нагрузке работает только часть отверстий во внутреннем секторе. При увеличении нагрузки включается в работу дополнительные ряды отверстий. Секционирование верхней тарелки исключает гидравлические перекосы по пару и воде при изменениях нагрузки и во всех случаях обеспечивает обработку струй воды паром. Пройдя струйную часть, вода попадает на перепускную тарелку 5, предназначенную для сбора и перепуска воды на начальный участок, расположенный ниже барботажной тарелки 3. Перепускная тарелка 5 имеет отверстие в виде сектора, который с одной стороны примыкает к вертикальной сплошной перегородке 8, идущей вниз до основания корпуса колонки. Вода с перепускной тарелки 5 направляется на непровальную барботажную тарелку 3, выполненную в виде кольца с рядами отверстий, ориентированными перпендикулярно потоку воды.

К барботажной тарелке примыкает водосливной порог 9, который проходит до нижнего основания деаэратора. Вода протекает по барботажному листу, переливается через порог и попадает в сектор, образуемый порогом 9 и перегородкой 8, а затем отводится из деаэратора через трубу 11. Весь пар подводится под барботажную тарелку по трубе 2. Под тарелкой 3 устанавливается паровая подушка, и пар, проходя через отверстия, барботирует воду. С увеличением нагрузки, а следовательно, и расхода пара, высота паровой подушки увеличивается и избыточный пар перепускается в обвод барботажного листа через отверстия в перепускных трубах 4. Затем пар проходит черезгорловину в перепускной тарелке 5 и поступает в струйный отсек, где большая часть конденсируется. Парогазовая смесь отсасывается по трубе 7.

Рис 1. Принципиальная схема двухступенчатого вертикального вакуумного деаэратора.

При использовании в качестве греющей среды перегретой воды последняя также подается под барботажную тарелку по трубе 2. Попадая в область с давлением ниже атмосферного, вода вскипает, образуя под листом паровую подушку. Вода, оставшаяся после вскипания, по водоперепускной трубе 10 поступает на барботажную тарелку, где проходит обработку совместно с исходным потоком воды. Дальнейший путь паравыделившегося из перегретой воды, не отличается от описанной выше.

Вся колонка изготавливается цельносварной. Для возможности ее разъема предусматривается монтажный стык, расположенный выше перепускной тарелки. В табл.3 приведены основные конструктивные характеристики вакуумных деаэраторов ДВ-5 - ДВ-25.

Вертикальные выпара поверхностного типа.

Таблица 3. Основные конструктивные характеристики вакуумных деаэраторов

Наименование параметров Тип вакуумного деаэратора
ДВ-5 ДВ-15 ДВ-25
Номинальная производительность, т/ч
Высота, мм
Диаметр корпуса деаэратора, наружный, мм
Диаметр трубы, наружный, мм:
водоподводящей
отводящей
отсоса смеси
перепускных
подвода теплоносителя
Масса, кг
Емкость, м³
5
2400
616

57
76
159
57
57
471
0,67

15
2400
716

76
89
159
76
89
561
0,90

25
2400
816

89
108
159
76
108
666
1,2

На рис.2 приведена схема компоновки вертикального вакуумного деаэратора с охладителем выпара поверхностного типа. Часть потока исходной воды пропускается через охладитель выпара. Для обеспечения необходимого расхода выпара при всех нагрузках деаэратора расход воды на охладитель выпара должен соответствовать номинальной производительности и поддерживаться постоянным. Конденсат из охладителя выпара рекомендуется отводить отдельным трубопроводом через гидрозатвор в дренаж или на верхнюю тарелку деаэратора. С этой целью охладитель наклонен в сторону отвода конденсата (уклон 1:10).

Рис.2. Схема компоновки вертикального вакуумного деаэратора с охладителем с выпара поверхностного типа:
1 - вакуумный деаэратор; 2 - охладитель выпара; 3 - подвод греющей среды; 4 - подвод исходной воды; 5 - отвод деаэрированной воды; 6 - отвод конденсата: 7 - отвод газов

Вакуумные деаэраторы следует защищать от переполнения и от опасного повышения давления. Наиболее просто вопрос защиты решается при сливе деаэрированной воды самотеком в промежуточные (или аккумуляторные) баки атмосферного давления при обязательном отсутствии запорной и регулирующей арматуры на сливных трубопроводах. В этом случае защита осуществляется через переливные гидрозатворы баков, рассчитанные на пропуск максимального расхода воды, поступающей в деаэратор при аварийных ситуациях. В остальных случаях защита должна выполняться с помощью гидрозатвора, присоединяемого к сливному трубопроводу или промежуточному коллектору. Высота гидрозатвора выбирается в зависимости от места его присоединения к системе. При подводе к деаэратору в качестве греющей среды пара необходимо также устанавливать предохранительный гидрозатвор на паропроводе между деаэратором и регулятором давления.

Комплектация вакуумных деаэраторов вспомогательным оборудованием (в количестве по 1 шт.) приведена в табл.4.

Таблица 4. Комплектация вакуумных деаэраторов вспомогательным оборудованием

Деаэратор Охладитель
выпара
Эжектор
водоструйный
Клапан регулирующий
на подводе
теплоносителя
Клапан регулирующий
на подводе
исходной воды
ДВ-5А ОВВ-2 ЭВ-10 (р вс =0,02 МПа)
ЭВ-30 (р вс =0,006 МПа)
6с-9-1
Ду=80мм
р у =10,0 МПа
9с-3-3
Ду=50мм
р у =6,4 МПа
ДВ-15 то же то же то же
ДВ-25 ЭВ-30 (р вс =0,02 МПа)
ЭВ-60 (р вс =0,006 МПа)
Т-34б
Ду=80мм
р у =6,4МПа

Общий вид вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25 приведен на рис. 3. Основные размеры вакуумных деаэраторов этих типоразмеров даны в табл.5, экспликация штуцеров - в табл.6, а компоновка этих вакуумных деаэраторов с охладителями выпара - на рис.4.

Основные размеры установок с вакуумными деаэраторами ДВ-5, ДВ-15, ДВ-25 и соответствующими охладителями выпара приведены в табл.7, а экспликация штуцеров этих установок - в табл.8.

Техническая характеристика вакуумных деаэраторов ДВ-5,ДВ-15, ДВ-25

Рис.3 Общий вид вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25


Рис. 4 Компоновка вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25

Таблица 5. Основные размеры вакуумных деаэраторов ДВ-5, ДВ-15, ДВ-25

Типоразмер деаэраторов Производи-тельность, т/ч L L 1 I D xδ D 1 H Масса, кг
ДВ-5 5 786 836 200 600х8 24 2800 471
ДВ-15 15 886 936 250 700х8 24 2800 561
ДВ-25 25 1000 1296 275 800х8 28 2800 666

Таблица 6. Экспликация штуцеров ДВ-5, ДВ-15, ДВ-25

Таблица 7. Основные размеры, мм, установок с вакуумными деаэраторами ДВ-5, ДВ-15, ДВ-25

Типоразмер L L ! L 2 L 3 I I 1 I 2 I 3
деаэратора Охладителя выпара
ДB-5 ОВВ-2 1469 796 786 1020 698 570 180 90
ДВ-15 ОВВ-2 1519 896 886 1020 698 570 180 90
ДВ-25 ОВВ-2 1576 906 1000 1020 698 570 180 90
Типоразмер D 1xδ Н Н 1 Н 2 h р 1 Масса, кг
деаэраора Охладителя выпара
ДB-5 ОВВ-2 325х8 3398 2800 1260 100 240 638
ДВ-15 ОВВ-2 700х8 325х8 3398 2800 1260 100 240 728,3
ДВ-25 ОВВ-2 800х8 325х8 3398 2800 1260 100 240 833,3

Таблица 8. Экспликация штуцеров в установках с вакуумными деаэраторами ДВ-5, ДВ-15, ДВ-50

Индекс Назначение Диаметр штуцера наружный, мм
ДВ-5 ДВ-15 ДВ-25
Г Подвод перегретой воды (теплоносителя) 57 89 108
Д Подвод исходной воды 57 76 89
Е Отвод деаэрированной воды 76 89 108
Ж Отвод парогазовой смеси к эжектору 57 57 57
И Отвод конденсата 57 57 57
К Подвод охлаждающей воды 57 57 57
Л Отвод охлаждающей воды 57 57 57

Деаэратор вакуумный марки СДВ(В) применяется для деаэрации подпиточной или сетевой воды закрытых и открытых теплосетей.

Устройство и принцип работы деаэратора

В вакуумной деаэрационной колонке применена двухступенчатая схема деаэрации: 1ая ступень - кавитационная, 2ая ступень - пленочно-капельная. Поток исходной воды с температурой 55-75 грС и давлением 0,2-0,6 МПа, подается на рабочие сопла (1ая ступень дегазации), где происходит вскипание воды и создание кавитационного течения. Растворенные газы выделяются в парогазовые пузыри, и образовавшийся двухфазный поток поступает на перепускные листы (2-ая ступень деаэрации).

После деаэрационной колонки деаэрированная вода стекает в деаэраторный бак, откуда насосами подается в обратный трубопровод теплосети или в аккумуляторные баки.

Регулирование уровня воды в деаэраторной баке осуществляется при помощи регулирующего клапана, установленного на линии подачи исходной воды на деаэрационную колонку.

В вакуумных деаэраторах используется водоструйный эжектор - устройство для принудительного отсоса парогазовой смеси из питательной воды паровых котлов и подпиточной воды систем теплоснабжения для защиты оборудования и труб от коррозии.

Условное обозначение вакуумного деаэратора — ДВ-5 (15, 25, 50 … 800М), где цифра означает номинальную производительность тонна/час, а литера «М» — модернизированный, горизонтальный.

Номинальная производительность ДВ — это расход воды за единицу времени (вода, подлежащая деаэрации, плюс конденсат пара).

Каталог вакуумных деаэраторов

Модель
оборудования
Исполнение колонки Производ-ть ном., т/ч Диапазон производ-ти, % Давление рабочее абсолютное, МПа Бренд Цена
ДВ-5 вертикальная 5 30...120 0,0075...0,05 -
ДВ-15 вертикальная 15 30...120 0,0075...0,05 -
ДВ-25 вертикальная 25 30...120 0,0075...0,05 -
ДВ-50 вертикальная 50 30...120 0,0075...0,05 -
ДВ-75 вертикальная 75 30...120 0,0075...0,05 -
ДВ-100 вертикальная 100 30...120 0,0075...0,05 -
ДВ-150 вертикальная 150 30...120 0,0075...0,05 -
ДВ-200 вертикальная 200 30...120 0,0075...0,05 -
ДВ-400М горизонтальная 400 30...120 0,0016...0,05 -
ДВ-800М горизонтальная 800 30...120 0,0016...0,05 -

Устройство и принцип работы вакуумного деаэратора

Деаэрационная установка состоит из:

В ДВ применяется двухступенчатая система дегазации. 1-я ступень струйная, 2-я — барботажная, непровальная дырчатая тарелка.

Вода подаётся на верхнюю тарелку, разбитую на секции таким образом, чтобы количество работающих отверстий соответствовало нагрузке. При минимальной нагрузке (до 30%) в рабочем положении находится лишь часть отверстий, при увеличении нагрузки открываются следующие секции. Такое устройство деаэратора вакуумного позволяет избежать гидравлических перекосов при повышении или понижении нагрузки, что обеспечивает стабильную обработку воды паром.

После струйной части вода попадает на перепускную тарелку с отверстием в виде сектора, примыкающим одной стороной к сплошной вертикальной перегородке. Далее она подаётся на 2-ю ступень, отверстия у которой расположены перпендикулярно потоку. Вода проходит по барботажной тарелке, переливается через водосливной порог и стекает в сектор с порогом и перегородкой, после чего отводится через трубу.

Греющая среда (пар или перегретая вода) подаётся в область под 2-й ступенью дегазации, давление в которой ниже атмосферного. Вследствие этого она закипает и образуется паровая подушка. Вода, которая осталась после вскипания, смешивается с исходной водой, подлежащей деаэрации.

Проходя через отверстия тарелки, пар барботирует воду. С увеличением нагрузки излишки пара по перепускным трубам перепускаются, минуя барботажную тарелку. После этого пар через горловину перепускной тарелки поступает в струйный отсек, где его основная часть конденсируется, а оставшаяся паровоздушная смесь отводится в ОВВ.

Паспорт деаэратора ДВ содержит подробную информацию технических характеристиках устройства, порядке его установки, подготовке к работе и техническому обслуживанию. Также в паспорте обозначены схемы включения вакуумного деаэратора при сливе воды самотёком и при работе «на насос».

Компания «СТИШМАШ», производитель и поставщик промышленного оборудования, предлагает деаэраторы вакуумные по заводской цене.

Модификации

Под номинальной производительностью вакуумных деаэраторов понимается расход воды, который состоит из суммы исходных потоков, подаваемых на верхнюю тарелку и сконденсированного в деаэраторе пара. Расход теплоносителя - перегретой деаэрированной воды не учитывается в номинальную производительность. При использовании в качестве теплоносителя конденсата, возвращаемого с производства, его расход включается в производительность деаэратора.

Назначение и техническая характеристика.

Вакуумный деаэратор ВД-400 (см. рис.4.3) предназначен для удаления коррозийно-агрессивных газов из подпиточной воды энергетических котлов. В соответствии с ГОСТ 16860-77 ВД-400 должен обеспечить средний подогрев воды на величину от 15є до 25°С при изменении произ-водительности в деаэраторе от 30% до 120% от номинальной, содержание кислорода в деаэрированной воде не должно превышать 30 мкг/кг, свободная углекислота должна отсутствовать.

В качестве теплоносителя используется пар от РУ-16/3 .

Эжектор типа ЭПО-3-25/75 предназначен для отсоса паровоздушной смеси из вакуумного деаэратора.

Рабочей средой является пар с абсолютным давлением 0,588 мПа (6 ата), охлаждающей водой служит ХОВ с БЗК.

Основные технические характеристики ВД-400:

Номинальная производительность - 400 т/ч

Максимальная производительность - 480 т/ч

Минимальная производительность - 120 т/ч

Рабочее абсолютное давление - 0,075-0,5 кгс/смІ

Температура теплоносителя - 70-180°

Основные технические характеристики эжектора:

Расход пара - 1000 кг/ч

Абсолютное давление пара перед соплами - 7 ата

Температура пара - 158єС

Расход охлаждающей воды - 165000 кг/ч

Температура охлаждающей воды - 30єС

Производительность по паровоздушной смеси - 87 кг/ч

Рис 5.3.

Описание конструкции и принцип работы.

В вакуумном деаэраторе ВД-400 применена двухступенчатая деаэрация воды: I-я ступень струйная, 2-я - барбатажная, что надежно обеспечивает требуемое нормами остаточное содержание кислорода и углекислоты в широком диапазоне и изменение тепловой и гидравлической нагрузки деаэратора.

Деаэратор работает следующим образом: химически обессоленная вода поступает в деаэратори попадает в распределительный коллектор, откуда стекает на первую тарелку. Прошедшая сквозь отверстия первой тарелки вода попадает на вторую тарелку. Такая конструкция первых двух тарелок объясняется выполняемой ими функцией встроенного охладителя выпара, т.е. должны обеспечить полную конденсацию необходимого количества выпара. Третья является основной, обеспечивающей работу деаэратора при всех нагрузках. В деаэраторе имеется отсек, куда подается пар. Пар поступает под барбатажный лист, а оставшаяся вода по каналу вытесняется на уровень барбатажного листа и отводится из деаэратора вместе с деаэраторной водой.

Проходя сквозь отверстия барбатажного листа и слой воды на нем, обеспечиваемый переливным порогом, пар догревает воду до температуры насыщения и подвергает интенсивной обработке.

При этом под листом образуется соответствующая паровая подушка, которая с увеличением расхода пара возрастает и избыточный пар перепускается в обвод барбатажного листа в струйный отсек между третьей и четвертой тарелками. Пар, прошедший сквозь барбатажный лист пересекает струйный поток, сливающийся с четвертой тарелки, частично конденсируясь и нагревая при этом воду, и также поступает в струйный отсек между третьей и четвертой тарелками. В этом отсеке происходит основная конденсация пара и нагрев воды до температуры, близкой к температуре насыщения. Затем пар поступает в отсек между второй и третьей тарелками, где практически полностью конденсируется. В отсеке между первой и второй тарелками происходит охлаждение паровоздушной смеси и охлаждение неконденсирующихся газов, которые отсасываются эжектором.

Такая конструкция деаэратора обеспечивает полный противоток между паром и водой на всем пути осуществления процесса дегазации, исключения мертвых зон и интенсивную вентиляцию всех паровых объемов, многократность и непрерывность обработки воды. Корпус деаэратора изготовлен из углеродистой стали, все внутренние элементы из нержавеющей стали. Крепление всех элементов к корпусу и между собой осуществляются электрической сваркой.

Эжектор имеет три ступени сжатия и состоит из следующих основных элементов: стального сварного корпуса трубной системы, верхней крышки, водяной камеры, сопел и диффузоров.

Корпус образован тремя сваренными между собой цилиндрическими камерами, объединенными верхним и нижним фланцами. В камерах размещены три ступени трубной системы, диффузор.

Трубная система выполнена из трех групп охлаждающих трубок U-образной формы Ш19х1 и сплава МНЖ-5-1, развальцованных в трубной доске. С целью обеспечения интенсивной конденсации пара и охлаждения паровоздушной смеси, каждая ступень трубной системы разделена горизонтальными перегородками, образующими проходы для паровоздушной смеси.

В трубной доске имеются отверстия для протока конденсата из третьей ступени эжектора во вторую, из второй ступени в первую. Трубная система при помощи шпилек крепится к нижнему фланцу корпуса и устанавливается на водяной камере.

Водяная камера выполнена сварной и состоит из днища с входным и выходным фланцами, перегородок и общего фланца, к которому крепится трубная система и корпус.

Крышка эжектора состоит из трех камер, собранных на общем фланце. К всасывающей камере первой ступени приварен входной приемный патрубок паровоздушной смеси. В верхней части каждой камеры имеются соответствующие гнезда под паровые сопла и во фланце отверстия для перехода паровоздушной смеси во вторую и третью камеры. Помимо этого во фланце имеются три посадочных отверстия для установки в них диффузоров, сопла и диффузоры расположены по центральной продольной оси корпуса каждой ступени. Сопла выполнены из нержавеющей стали, а диффузоры - литые, латунные.

Паровоздушная смесь поступает во всасывающую камеру эжектора и увлекается выходящей из сопла с большой скоростью струей пара через смесительную камеру в диффузор первой ступени, где происходит сжатие ее давления, устанавливающегося в охладителе первой ступени. Из диффузора паровоздушная смесь поступает в нижнюю часть корпуса, откуда перегородками направляется в холодильник, смывая его трубки снаружи. Охлаждающая вода поступает в водяную камеру и проходит последовательно по трубкам холодильников.

При этом происходит конденсация пара, находящегося в смеси и несконденсировавшаяся часть проходит во всасывающую камеру и входную часть диффузора второй, а затем и третьей ступени.

Образовавшийся конденсат рабочего пара третьей ступени отводится в отсек охладителя второй ступени, здесь часть его испаряется, а часть смешивается с конденсатом второй ступени и поступает в охладитель первой ступени, а оттуда в бак низких точек.

Деаэратор ВД-400 не имеет запаса по уровню воды в своем корпусе, поэтому для устройства работы последнего имеется ВУС и промежуточный бак с регулируемым уровнем воды, подающейся на всас перекачивающих насосов.

Установка промбака с регулируемым уровнем (Н доп.= 80ч220 см.) обусловлена тем, что самослив из ВД-400 к ПН менее 10 метров.

Паровое пространство промбака соединено с паровым пространством вакуумного деаэратора трубой Ду 100 (заведена между I и II тарелкой), что позволяет удалить остаточный кислород после прохождения деаэратора.

Для защиты деаэратора от переполнения и превышения допустимого давления с промежуточного бака выполнен гидрозатвор в БЗК. Для достижения минимальной гидравлической загрузки деаэратора в 30% от номинальной имеется линия рециркуляции с ПН Ду 100.

Бравиков А. М.

Экономичность вакуумных деаэраторов во многом зависит от подогрева в деаэраторе деаэрируемой воды. Чем меньше подогрев воды в деаэраторе, тем экономичнее режим деаэрации. Однако подогрев воды в деаэраторе влияет не только на экономичность режима, но и на качество деаэрации, а конкретнее - чем больше подогрев воды в деаэраторе, тем лучше качество деаэрации.
Одним из требований, предъявляемых к работе вакуумных деаэраторов, является обеспечение содержания кислорода в деаэрированной воде не более 50 мкг/кг. В этой связи оптимальным нагревом воды в деаэраторе является минимальный нагрев, при котором обеспечивается требуемое содержание кислорода в деаэрированной воде.
Опыт эксплуатации вакуумных деаэраторов показывает, что типовые вакуумные деаэраторы на разных объектах имеют разные технические характеристики. К числу таких характеристик может быть отнесен оптимальный нагрев воды в деаэраторе. Согласно оптимальный нагрев воды на разных объектах составляет от 5 до 15°С. Кроме того, опыт эксплуатации вакуумных деаэраторов показывает, что оптимальный нагрев может составлять 5 - 25°С.
На рис. 1 показано содержание кислорода в деаэрированной воде в зависимости от нагрева воды в деаэраторе (дегазационные характеристики деаэраторов), полученное экспериментально в одинаковых температурных и гидродинамических режимах на деаэраторах, установленных на разных объектах.

Рис. 1. Зависимости содержания кислорода в деаэрированной воде от нагрева воды в деаэраторах ДВ-400 и ДВ-800:
1 - ТЭЦ Горьковского автозавода; 2 - Усть-Каменогорская ТЭЦ; 3 - тепловые сети г. Курска; 4 - Новосибирская ТЭЦ-5

Кроме того, опыт эксплуатации вакуумных деаэраторов показывает, что в процессе эксплуатации дегазационная характеристика деаэратора может изменяться при неизменных температурных и гидродинамических параметрах режима работы деаэратора. При этом оптимальный нагрев воды в деаэраторе может как увеличиваться, так и уменьшаться. Причина, вызвавшая изменение дегазационной характеристики, как правило, остается неизвестной, так как теоретические положения о термической деаэрации не дают оценки данному явлению .
Вопрос изменения дегазационной характеристики деаэратора при неизменных температурных и гидродинамических параметрах в открытой печати впервые обсуждался в , где высказывалась точка зрения, что причиной изменения дегазационной характеристики деаэратора при неизменных температурных и гидродинамических параметрах режима работы является изменение кавитационной прочности деаэрируемой воды. Данное свойство воды характеризует условия, при которых в воде зарождаются и растут газовые пузырьки, и оно подробно рассмотрено в специальной литературе, например, в . Согласно теории кавитации интенсивность выделения растворенных газов из воды за счет образования пузырьков зависит от кавитационной прочности воды. Чем меньше кавитационная прочность воды (в некоторых источниках она называется “объемная прочность воды”), тем интенсивнее из нее выделяются газы за счет образования пузырьков и, следовательно, тем меньше минимально необходимый нагрев воды в деаэраторе.
Из теории кавитации известно, что кавитационная прочность воды зависит от многих факторов, например, от механических микроскопических примесей в жидкости, от присутствия растворенных солей в жидкости, от обработки воды давлением, от воздействия космических лучей, от гидродинамического состояния потока (от турбулентности) и др. При определении дегазационной характеристики деаэратора факторы, влияющие на кавитационную прочность деаэрируемой воды, как правило, не учитываются, а, следовательно, и кавитационная прочность деаэрируемой воды тоже не учитывается. Однако кавитационная прочность на разных объектах может быть различной.


Рис. 2. Схема реконструированных деаэраторов ДВ-400 и ДВ-800:
1 - корпус; 2, 3, 4, 5 - тарелка; 6 - патрубок подвода недеаэри- рованной воды; 7 - патрубок подвода греющей воды; 8 - патрубок отвода деаэрированной воды; 9 - патрубок отвода неконденсирующихся газов; 10 - решетка турбулизирующая; 11 - лопатка направляющая; 12 - сопло

Кроме того, кавитационная прочность воды может изменяться в процессе эксплуатации деаэратора. В этой связи изменяется и дегазационная характеристика деаэратора. Изменение дегазационной характеристики в процессе эксплуатации может приводить к ухудшению качества деаэрации или к необоснованно завышенному нагреву воды в деаэраторе, что экономически невыгодно.
В последнее время в совершенствовании процессов деаэрации наметилась тенденция повышения интенсивности процесса деаэрации за счет уменьшения кавитационной прочности деаэрируемой воды. Например, обработка деаэрируемой воды ультразвуком улучшает качество деаэрации. Замечено также, что при повышении хлоридов в деаэрируемой воде улучшается качество деаэрации, что, вероятно, связано также с уменьшением кавитационной прочности деаэрируемой воды.
Снижение кавитационной прочности деаэрируемой воды происходит и в деаэраторе (получившем распространение в теплоэнергетике), разработанном на основе изобретения . Отличительной особенностью данного деаэратора является то, что в патрубке подвода в деаэратор недеаэрированной воды установлено сопло. В сопле вода разгоняется до больших скоростей и турбулизуется, в результате кавитационная прочность деаэрируемой воды уменьшается, а интенсивность выделения газов из деаэрируемой воды за счет образования пузырьков повышается.
Однако данный деаэратор имеет существенный недостаток, выражающийся в том, что перед ним требуется создавать повышенное давление недеаэрированной воды. Указанный недостаток устранен в деаэраторе, показанном на рис. 2, в котором для повышения турбулентности потока деаэрируемой воды в патрубке 6 установлены решетка турбулентности 10, винтовые направляющие лопатки 11 и сопло 12. Данный деаэратор создан на основе изобретения . В разработанном деаэраторе поток деаэрируемой воды, проходя через патрубок 6, турбулизуется решеткой 10, закручивается по спирали лопатками 11 и затем поступает в сопло 12. При поступлении в сопло давление в потоке воды понижается, при этом из деаэрируемой воды интенсивно выделяются газы за счет образования пузырьков. При выходе из сопла 12 под действием центробежных сил закрученный поток распадается на мелкие капли, которые затем, двигаясь в паровом отсеке, подогреваются паром; при этом из капель, за счет диффузии, интенсивно выделяются газы.
Патрубок 6 с установленными в нем решеткой 10, лопатками 11 и соплом 12 выполняет роль форсунки, от эффективности работы которой зависит качество деаэрации воды.
Необходимым условием для распада потока воды на мелкие капли при выходе из форсунки является возрастание тангенциальной составляющей скорости течения жидкости в поперечном сечении потока от центральной оси к периферии. Данное условие может быть достигнуто за счет выбора оптимального угла закрутки направляющей лопатки.
Для определения угла закрутки направляющей лопатки определим математическую модель потока, закрученного винтовыми лопатками. Для этого зададимся законом закрутки лопатки
(1)
где а - угол закрутки лопатки на расстоянии r от оси патрубка, равный углу между образующей цилиндра, соосного с патрубком, и касательной к лопатке, исходящей из выходной кромки лопатки; r - расстояние (радиус) от угла а до оси патрубка; dH - диаметр патрубка; ан - угол закрутки лопатки на расстоянии dH/2 от оси патрубка.
Составим дифференциальное уравнение элементарной струйки потока. Запишем закон сохранения энергии для элементарной струйки в форме уравнения Бернулли, считая, что жидкость идеальная

(2)
где P - статическое давление элементарной струйки, образовавшееся от закрутки потока; р - плотность жидкости; и - тангенциальная составляющая скорости движения элементарной струйки; z - осевая составляющая скорости движения элементарной струйки; Рт - динамический напор элементарной струйки до закрутки потока.
Считаем, что угол закрутки потока равен углу закрутки лопатки.
Центробежная сила, действующая на элементарную струйку закрученного потока, равна разности давлений, действующих на боковые поверхности этой струйки, что выражается формулой
(3)
Из уравнений (1), (2), (3) получаем
(4)
где

Решение уравнения (4) имеет вид

(5)
После упрощения уравнение (5) может быть представлено в виде
(6)
где С1 - постоянная интегрирования.
Уравнение (6) представляет математическую модель потока жидкости в патрубке, закрученного винтовыми лопатками, закон закрутки которых описан уравнением (1).
Уравнение (6) позволяет определить поле скоростей потока и плотность орошения в факеле при различных значениях а, и dH, а также определить оптимальные ан и dH при заданном расходе воды.
На рис. 3 показана характеристика форсунки, направляющие лопатки которой рассчитаны с помощью формулы (6). Данная характеристика определена экспериментально при испытании одной из пяти форсунок, установленных в деаэраторе ДВ-800. Форсунки рассчитаны на расход воды 120 т/ч каждая при перепаде давления на форсунке 0,10 МПа.
При испытании форсунки деаэратор работал в следующем режиме:
расход недеаэрированной воды в деаэратор 575 т/ч;
температура недеаэрированной воды 26°С;
давление в деаэраторе 0,006 МПа;
давление воды перед форсункой 0,079 МПа.
Из результатов испытаний видно, что в указанном режиме пропускная способность форсунки близка расчетному значению, а плотность орошения одинакова по всему поперечному сечению факела.


Рис. 3. Плотность орошения в поперечном сечении факела:
r - расстояние от оси факела

Следует отметить, что расчетная производительность форсунки 120 т/ч определялась из условия максимально возможного расхода недеаэрированной воды в деаэратор 600 т/ч. Увеличивать производительность деаэратора более 600 т/ч не было необходимости, поскольку суммарная производительность деаэраторов, установленных на объекте, значительно превышает максимально возможный расход воды в деаэраторы.
В настоящее время в промышленной эксплуатации находится более 10 реконструированных деаэраторов, конструктивное исполнение которых аналогично деаэратору, показанному на рис. 2. Первый реконструированный деаэратор находится в эксплуатации с 1994 г. Испытания первого реконструированного деаэратора показали, что за счет реконструкции в нем уменьшился минимально необходимый нагрев воды с 24 до 16°С и понизилась минимально необходимая температура греющей воды. До реконструкции в качестве греющей среды в деаэраторе использовалась прямая сетевая вода с температурой 90°С и более и для достижения данной температуры использовался специальный подогреватель, который включался в работу при температуре прямой сетевой воды ниже 90°С. После реконструкции деаэратор обеспечивает нормальное качество деаэрации при температуре греющей воды 80°С и более. Снижать температуру греющей воды менее 80°С при испытании не было необходимости, так как для данного объекта указанная температура соответствует минимальному значению температуры прямой сетевой воды, определенной по температурному графику тепловых сетей. В этой связи данный деаэратор не испытан при температуре греющей воды ниже 80°С. Однако опыт эксплуатации реконструированных деаэраторов на других объектах показал, что снижение температуры греющей воды в них до 70°С не оказывает заметного влияния на качество деаэрации. Что касается максимальной производительности реконструированного деаэратора, то при температуре недеаэрированной воды
30°С и температуре греющей воды 70°С и более реконструированный деаэратор обеспечивает качественную деаэрацию 950 т/ч воды. Нереконструированные деаэраторы согласно при температуре недеаэрированной воды 30°С могут продеаэрировать не более 620 т/ч.
Имеется также положительный опыт эксплуатации реконструированных деаэраторов в течение длительного времени (с 1996 г.) при использовании в них в качестве греющей среды обратной сетевой воды с температурой 50 - 70°С. Опыт эксплуатации показал, что при температуре греющей воды 50 - 70°С деаэраторы стабильно обеспечивают требуемое качество деаэрации, однако производительность деаэратора при этом уменьшается и при температуре греющей воды 50°С производительность деаэратора составляет 40 - 50% номинальной производительности деаэратора.
Экономический эффект от реконструкции деаэратора ДВ-800, установленного на ТЭЦ в схеме подпитки теплосети, составляет 800 т/год условного топлива.

Выводы

  1. Кавитационная прочность воды является одним из факторов, определяющих интенсивность процесса деаэрации воды в термических деаэраторах.
  2. Различие дегазационных характеристик вакуумных деаэраторов, установленных на разных объектах, вызвано различием кавитационной прочности деаэрируемой воды на этих объектах.
  3. Изменение дегазационной характеристики деаэратора без изменения температурных и гидродинамических параметров режима работы деаэратора происходит в связи с изменением кавитационной прочности воды.
  4. Применение в вакуумных деаэраторах форсунок с направляющими винтовыми лопатками улучшает дегазационную характеристику деаэратора, а именно:
    уменьшает минимально необходимый нагрев воды в деаэраторе с 24 до 16°С;
    снижает минимально допустимую температуру греющей воды с 85 - 90 до 70°С.
  5. Производительность реконструированного деаэратора, в конструкции которого применены форсунки с направляющими винтовыми лопатками, составляет 950 т/ч при температуре недеаэрированной воды 30°С и температуре греющей воды 70°С и более.

Список литературы

  1. Типовая инструкция по эксплуатации автоматизированных деаэрационных установок подпитки теплосети. М.: Союзтехэнерго, 1985.
  2. РТМ 108.030.21-78. Расчет и проектирование термических деаэраторов. Л.: ЦКТИ, 1979.
  3. Бравиков А. М. Разработка и исследование деаэратора перегретой воды. - Теплоэнергетика, 1990, № 12.
  4. Карелин В. Я. Кавитационные явления в центробежных и осевых насосах. М.: Машиностроение, 1975.
  5. Водолазов О. А. Новый способ деаэрации воды. - Энергетик, 1999, № 2.
  6. А.с. 1255805 (СССР). Вакуумный деаэратор / Комарчев И. Г., Нестеренко Б. М., Качанова-Махова Н. И. Опубл. в Б. И., 1986, № 33.
  7. Пат. 2054384 (РФ). Термический деаэратор / Бравиков А. М. Опубл. в Б. И., 1996, № 5.
  8. Шарапов В. И., Кувшинов О. Н. О рабочей производительности вакуумных деаэраторов. - Электрические станции, 1998, № 8.