Прокладочные и набивочные материалы для арматуры котлов. Вспомогательные материалы

Примеры построения

Материаловедение - Неметаллические и композиционные материалы

НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

К традиционным неметаллическим материалам относятся волокнистые материалы (древесина), полимерные органические и неорганические материалы (пластмассы), каучуки и резины, клеи и герметики, лакокрасочные покрытия, стекло, керамика, а также материалы нового поколения – композиционные материалы на неметаллической основе.

ПЛАСТИЧЕСКИМИ МАССАМИ (пластмассами, пластиками) называют многокомпонентные искусственные материалы на основе природных или синтетических высокомолекулярных органических веществ, в состав которых входят: высокомолекулярная основа-связка (синтетические смолы, эфиры, целлюлоза); наполнители (порошкообразные, волокнистые, сетчатые вещества органического или неорганического происхождения), – пластификаторы (олеиновая кислота, стеарин, дибутилфторат), стабилизаторы, красители, отвердители и другие специальные добавки.

Классификация пластмасс

а) по типу связующего (полимера): фенопласты (основа – фенольные и фенолоальдегидные смолы); эпоксипласты (эпоксидная смола); амидопласты (полиамидная смола).

б) по виду наполнителя:

пресс-порошки – с порошкообразным органическим (древесная мука, целлюлоза, графит) или минеральным наполнителем (тальк, кварцевая мука, микроасбест и др.);

пресс-материалы :

волокниты – с волокнистым наполнителем из очесов хлопка и льна;

стекловолокниты – в виде стеклянных нитей;

асбоволокниты – в виде нитей асбеста;

слоистые пластики – с тканым и с листовым наполнителем, в том числе бумажные листы (гетинакс), хлопчатобумажные ткани (текстолит), стеклоткани (стеклотекстолит), асбестовые ткани (асботекстолит);

газонаполненные пластики – с воздушным наполнителем (пенопласты, поропласты).

в) в зависимости от поведения смолы при нагреве:

реактопласты

термопласты

Методы переработки пластмасс: экструзия, прессование, литьевое прессование, литье, вакуумное и пневматическое формование, вальцевание, вспенивание, сварка, горячее напыление, строгание в листы, обработка на станках со снятием стружки

Резинами называют высокомолекулярные материалы, которые получают при вулканизации (нагрев до 100–150С) смеси натурального или синтетического каучука с различными наполнителями (ингредиентами). В процессе вулканизации образуются пространственные «сшитые» (сетчатые) структуры, заменяя линейную или слабоветвистую структуру каучуков. Здесь активную роль играет вулканизирующее вещество – сера (или селен), от количества которого зависит величина ячейки структуры, эластичность и твердость резины: а) мягкие резины (2–4 % S); б) жесткие – полуэбониты (12–13 % S); в) эбониты (30–50 % S). Кроме серы в состав резин входят:наполнители, мягчители, противостарители, антипирены, фунгициды, дезодоранты, красители ипигменты, регенерат.

Резинотехнические изделия получают при вулканизации (термической обработке) прессованных деталей из сырой резины. Резиновые изделия часто армируют тканью или металлической сеткой.

Клеи и Герметики

относятся к пленкообразующим материалам, так как они способны при затвердевании образовывать прочные пленки, хорошо прилипающие к различным материалам.

Клеи применяются для склеивания разнородных материалов (металла, керамики, пластмасса, дерева), а герметики обеспечивают уплотнение и герметизацию клепаных, сварных и болтовых соединений, топливных отсеков и баков, различных металлических конструкций, приборов, агрегатов, швов, стыков и т.д. Клеи и герметики могут быть в виде жидкостей, паст, замазок, пленок.

Лакокрасочные материалы (лкм)

Лакокрасочные материалы представляют собой многокомпонентные составы, в жидком состоянии наносимые на поверхность изделий и высыхающие с образованием пленок, удерживаемых силами адгезии. Назначение лакокрасочных покрытий: а) защита металлов от коррозии, дерева и тканей – от гниения и набухания; б) в декоративных целях – придание изделиям желаемого внешнего вида; в) для достижения специальных свойств – электроизоляционных, теплозащитных, светостойких и др.

Различают лакокрасочные материалы: прозрачные (лак); кроющие (эмаль) и подготовительные (грунтовка). Покрытия наносятся вручную кистью, распылением, окунанием и другими способами. Надежность защиты поверхности изделий обычно достигается использованием многослойных покрытий.

Стекла

Стеклами (или стеклом) называют переохлажденные вещества, получаемые из жидких расплавов неорганических соединений и их смесей.

Основой стекол являются стеклообразуюшие оксиды, по которым стекла разделяют на силикатные (SiO 2), алюмосиликатные (А1 2 О 3 иSiO 2), боросиликатные (В 2 О 3 иSiO 2), алюмоборосиликатные А1 2 О 3 , В 2 О 3 иSiО 2), борофторалюмосиликатные (В 2 О 3 , А1 2 О 3 ,FиSiO 2), алюмофосфатные (А1 2 О 3 и Р 2 О 5), алюмосиликофосфатные (А1 2 О 3 ,SiO 2 и Р 2 О а), силикотитановые (SiO 2 и ТiO 2), силикоциркониевые (SiО 2 иZrО 2) и др.

По назначению стекла классифицируют на химически стойкие, термостойкие, электровакуумные, электрические, оптические и т. п.

Достоинством стекол является их способность к многократному переплаву без изменения свойств.

Жидкую однородную стеклянную массу перерабатывают в изделия различными методами : вытягиванием (листовое стекло, трубки и стержни), прокаткой (листовое стекло, трубки и стержни), прессованием (толстостенные изделия), методом выдувания (тонкостенные изделия сложной конфигурации, например, баллоны ламп, электронно-лучевых трубок и других приборов), методом спекания стеклянных порошков (детали сложной конфигурации, эксплуатируемые в условиях больших тепловых нагрузок). Применяют также методы прямого литья (для низковязких масс и изготовления несложных изделий), литья под давлением и центробежного литья. Техника и технологические приемы идентичны с переработкой металлов. Стеклянные изделия и полуфабрикаты после изготовления подвергают отжигу при 400–600 °С для снятия остаточных напряжений. Длительность отжига зависит от толщины изделия.

Ситаллами называют искусственные материалы микрокристаллического строения, получаемые направленной инициированной кристаллизацией изделий из стекол.

От стекол ситаллы отличаются более высокими физико-механическими свойствами (твердостью, химической стойкостью, низкими диэлектрическими потерями при высоких частотах и температурах, высокой диэлектрической проницаемостью при высоких температурах).

Изделия из ситаллов формуют методами вытягивания и прокатки, прессованием, литья под давлением.

Керамика – неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемпературного обжига (спекание), в результате которого при 1200–2500 °С формируется структура материала, и изделие приобретает необходимые физико-механические свойства. Керамика была первым конкурентоспособным по сравнению с металлами классом материалов для использования при высоких температурах.

Основными компонентами технической керамики являются: а) оксиды (А1 2 O 3 – корунд,ZrO 2 ,MgO,CaO,BeO,ThO 2 ,UO 2), б) бескислородные соединения металлов (карбиды, бориды, нитриды, силициды, сульфиды).

В керамике могут присутствовать фазы: а) кристаллическая (основа в виде химических соединений или твердых растворов), б) стекловидная (в виде прослоек стекла в количестве 1–10 %, связывающих кристаллическую фазу), в) газовая (находится в порах керамики).

Большинство видов специальной технической керамики обладает плотной спекшейся структурой поликристаллического строения, для ее получения применяют специфические технологические приемы. Принципиальными недостатками керамики являются ее хрупкость и сложность обработки.

К основным областям применения керамических материалов относятся режущий инструмент, детали двигателей внутреннего сгорания и газотурбинных двигателей и др.

Прокладочные и уплотнительные материалы

Прокладочные материалы применяются для герметизации соединений корпусных или иных деталей (особенно при высоких давлениях и температурах внутри герметизируемой полости), для теплоизоляции и электроизоляции разъемных частей, устранения возможного просачивания жидкости и прорыва газов.

В качестве прокладочных материалов используют естественные, синтетические или композиционные материалы.

Естественные материалы – кора пробкового дерева, асбест, войлок и отожженная медь. Кора пробкового дерева применяется при небольших давлениях и температурах. Основное ее достоинство – маслобензостойкость. Из-за дефицитности применение коры пробкового дерева ограничено. Часто используют пробковую крошку в синтетическом клеящем составе. Асбест обладает прочностью, эластичностью, диэлектрическими свойствами, он устойчив при температурах до 1 500 °С. Войлок – плотный шерстяной материал. Войлочные прокладки предотвращают попадание в соединения посторонних загрязнений, задерживают смазочные масла, смягчают удары и вибрации, являются хорошим шумоизолятором. При высоких температурах и давлениях применяют красную отожженную медь.

Синтетические материалы – маслобензостойкая резина, различные пластмассы. Эти материалы обычно являются хорошими диэлектриками, но имеют низкие морозостойкость, теплостойкость и малый срок службы. Синтетические материалы применяются в неответственных соединениях или в качестве матрицы композиционных материалов.

Композиционные материалы – это целлюлозосодержащие материалы или композиция синтетический материал–упрочнитель. Целлюлозосодержащие материалы (бумага, плотный картон) применяются в качестве тонких прокладок в узлах, не подвергаемых воздействию влаги. Из бумаги, обработанной хлористым цинком, касторовым маслом и глицерином, получают фибру – прочный и долговечный диэлектрик, стойкий к маслу и воде. Из композиционных материалов чаще всего применяют композиции на основе маслобензостойкой резины. В качестве наполнителя используют распушенный асбест, графитный порошок, стальную фольгу, стальную проволоку или их сочетание. Композиционные прокладочные материалы наиболее универсальны, относительно дешевы, имеют большую долговечность.

Технические жидкости и газы

1) Смазочные материалы – вещества, обладающие смазочным действием, т.е. способностью снижать трение, уменьшать скорость изнашивания и устранять заедание трущихся поверхностей. Большинство смазочных материалов, за исключением твердых смазок (графит, сульфид молибдена и др.), являются жидкими.

2) К технологическим жидкостям относят: а) разделительные составы , предназначенные для снижения адгезии в контакте пресс-форм и литьевых форм с изделиями из резины и пластических масс, б) моющие жидкости (для промывки деталей и узлов машин в процессе их производства и ремонта), в) закалочные среды (приготовляемые на основе масел, водных растворов солей, водорастворимых полимеров).

3) Смазочно-охлаждающие жидкости (СОЖ) совмещают свойства смазочных масел и технологических жидкостей. Они одновременно смазывают поверхность инструмента и обрабатываемой детали, облегчая деформирование и улучшая качество получаемой поверхности, отводят теплоту, смывают стружку, пыль и другие загрязнения, а также защищают поверхность инструмента и деталей от коррозии. Вследствие многофункционального назначения СОЖ для их приготовления используют широкую номенклатуру масел, синтетических жидкостей, водных растворов, присадок и добавок.

4) Жидкие топлива – бензины, дизельные топлива, керосин и мазут, которые являются продуктами перегонки нефти. В машиностроении эти жидкости используют в качестве компонентов моющих жидкостей, СОЖ, растворителей и т.д.

5) При химико-термической обработке сталей применяют специальные газовые среды . Газы (азот, аммиак, аргон, ацетилен, водород, фреон , кислород, криптон и ксенон в электровакуумной технике для наполнения различных приборов, метан и пропан , углекислый ) и их смеси имеют широкое применение и в качестве топлив при газопламенной резке и закалке, плазмообразующих сред в процессах ионно-плазменной обработки, сварочных газов, хладагентов в холодильных установках и т.д.

6) Различные масла и синтетические жидкости, используемые в качестве рабочих тел в прессах, гидравлических передачах и приводах, вакуумных насосах, амортизаторах, тормозах и других устройствах . К ним относятся амортизационные жидкости, гидравлические масла, вакуумные масла, демпфирующие жидкости, приготовляемые в основном на базе минеральных масел и кремнийорганических жидкостей.

Абразивные материалы

(от латинского abrasio - соскабливание)– зернистые или порошкообразные вещества, предназначенные для оснащения рабочей части режущих инструментов.

Естественными абразивами являются: корунд, наждак, фанат, кремень, полевой шпат, пемза и др. В промышленности наиболее распространены искусственные абразивы: электрокорунд, карборунд и карбид бора.

Из порошков изготовляют шлифовальные круги различной формы, бруски, абразивные головки, сегменты, предназначенные для производства специальных абразивных инструментов.

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

– это материалы, состоящие из сильно различающихся по свойствам друг от друга, взаимно нерастворимых компонентов (из сравнительно пластичного матричного материала, который связывает композицию и придает ей нужную форму и более твердых и прочных веществ, являющихся упрочняющими наполнителями). Композиционные материалы используют для производства летательных аппаратов, в машиностроении, приборостроении, энергетике, в электронной, радиотехнической и электротехнической промышленности, а также на транспорте, в строительстве и других отраслях народного хозяйства.

В зависимости от материала матрицы различают композиционные материалы с металлической матрицей или металлические композиционные материалы (МКМ), с полимерной – полимерные композиционные материалы (ПКМ) и с керамической – керамические композиционные материалы (ККМ).

По типу упрочняющих наполнителей композиционные материалы подразделяют:

а) дисперсноупрочненные

б) армированные

или волокнистые

в) слоистые

В них искусственно вводят мельчайшие равномерно распределенные тугоплавкие частицы карбидов, оксидов, нитридов и другие, не взаимодействующие с матрицей и не растворяющиеся в ней вплоть до температуры плавления фаз

Арматурой в армированных композиционных материалах могут быть волокна различной формы (нити, ленты, сетки разного плетения). Их прочность определяется прочностью армирующих волокон, которые воспринимают основную нагрузку

Слоистые композиционные материалы набираются из чередующихся слоев волокон и листов матричного материала (типа «сэндвич»). Возможно поочередное использование слоев матрицы из сплавов с различными механическими свойствами

Электротехнические материалы. Для запитывания электро-технического оборудования, применяемого в сантехнических работах, используют различные силовые кабели.

Кабели силовые гибкие на напряжение до 220 В по ГОСТ 6731-77Е изготовляют следующих марок: РГД — с медными жилами с резиновой изоляцией; РГДО - с медными жилами с резиновой оболочкой; РГДВ - с основной жилой и изолиро-ванными вспомогательными жилами с общей резиновой изо-ляцией, обладающей защитными свойствами. Кабели приме-няют для соединения электрододержателей автоматических или полуавтоматических аппаратов с источником номиналь-ного переменного напряжения до 220 В, частотой 50 Гц или по-стоянного напряжения. Кабели предназначены для работы при температуре окружающей среды от —50 до +50 °С. Строи-тельная длина кабелей не менее 100 м.

Кабели силовые гибкие на напряжение 660 В по ГОСТ 13497-77Е выпускают следующих марок: КРПТ — с медными жилами с резиновой изоляцией в резиновой оболочке; КРПТН — с медными жилами с резиновой изоляцией в рези-новой оболочке, в резиновой маслостойкой оболочке, не рас-пространяющей горение; КРПГ — с медными жилами повы-шенной гибкости с резиновой изоляцией в резиновой оболоч-ке; КРПГН — с медными жилами повышенной гибкости с резиновой изоляцией в резиновой маслостойкой оболочке, не распространяющей горение; КРПС - с медными жилами по-вышенной гибкости с резиновой изоляцией с профилирован-ным сердечником в резиновой оболочке.

Кабели поставляют в бухтах массой бухты не более 50 кг или намотанными на деревянные барабаны.

Резинотехнические изделия. Ремни плоские приводные ткане-вые прорезиненные, используемые в электрогенераторах и элек-тронасосах, изготовляют трех типов в зависимости от назначе-ния и конструкции:

  • тип А - нарезные, применяемые для малых шкивов при скоро-стях вращения более 20 м/с; изготовляются шириной 20; 25; 30; 40; 45; 50; 60; 70; 75; 80; 85; 90; 100; 125; 150 мм;
  • тип Б - послойно завернутые, применяемые при работе с пре-рывной нагрузкой при скоростях вращения до 20 м/с; изготов-ляются шириной 20; 25; 30; 40; 150; 200; 250 мм;
  • тип В - спиральные завернутые, применяемые при работе с не-большими нагрузками при скоростях вращения до 15 м/с; из-готовляются шириной 20; 25; 30; 40; 50; 60; 75; 80; 85; 90; 100; 125; 150 мм.

Ремни шириной до 90 мм выпускаются длиной не менее 8 м; шириной 100 мм и более — длиной не менее 20 м.

Поверхность ремней должна быть гладкой, без оголения тканевых прокладок, без узлов, торчащих нитей и расслоений, без трещин, вмятин и пузырей, язвин, рубцов и механических повреждений.

Ремни приводные клиновые по ГОСТ 1284.1-80 состоят из кордткани или кордшнура, оберточной ткани и резины, соеди-ненных в одно целое путем вулканизации.

Внутренняя длина ремня соответствует длине его внутрен-ней окружности, а расчетная - длине окружности на уровне расчетной ширины ремня, измеренной под натяжением. Предпочтительными расчетными длинами ремней являются: 400; 450; 500; 560; 630; 710; 800; 900; 1000;1120;1250; 1400;1600; 1800; 2000; 2240; 2500; 2800; 3150; 3550; 4000; 4500; 5000; 5600; 6300; 7100; 8000; 9000; 10 000; 11 200; 12 500; 14 000; 16 000 и 18 000 мм.

В эксплуатации ремни должны сохранять работоспособ-ность в интервале температур от -30 до +60 °С.

Рукава резиновые напорные с текстильным каркасом (по ГОСТ 18698-79) применяются в качестве гибких трубопрово-дов для подачи под давлением жидкостей, газов и сыпучих ма-териалов. В зависимости от назначения и условий работы эти рукава изготовляют типов: Б - для подачи бензина, керосина, нефти и минеральных масел; В - для подачи воды и слабых растворов неорганических кислот и щелочей концентрацией до 20%; ВГ —для подачи горячей воды температурой до 100 °С; Г - для подачи воздуха, кислорода, ацетилена, углекислоты, азота и других инертных газов; П - для подачи пищевых ве-ществ; Ш - для подачи растворов при штукатурных работах; Пар-1 и Пар-2 - для подачи насыщенного пара.

Резинотканевые напорные рукава внутренним (номиналь-ным) диаметром 10; 12,5; 16; 20; 25; 31,5; 40; 50 и 63 мм изготов-ляют для рабочего давления до 2,0 МПа (20 кгс/см 2); диамет-ром 80; 100; 125; 160 и 200 мм — для рабочего давления до 0,5 МПа (5 кгс/см 2).

Рукава всех типов должны быть герметичными при испыта-нии гидравлический давлением, равным удвоенному рабочему давлению, а рукава типа Г — при испытании воздушным давле-нием, равным рабочему. Рукава типов Б, В, П и Ш должны иметь не менее чем трехкратный запас прочности, а рукава ти-пов ВГ, Г, Пар-1 и Пар-2 — не менее чем пятикратный.

Рукава всех типов должны сохранять работоспособность в интервале температур от -35 до +50 °С.

Рукава резиновые для газовой сварки и резки металлов (по ГОСТ 9356-75) применяют для подачи под давлением ацети-лена, жидкого топлива и кислорода к аппаратуре для сварки и резки металлов при температуре окружающего воздуха от -35 до +70 °С и от -55 до +70 °С в районах с холодным климатом (таблица ниже).

В зависимости от назначения рукава изготовляют трех ти-пов с отличительным цветом наружного резинового слоя:

  • тип I — для подачи ацетилена, бытового газа, пропана и бутана под давлением не более 0,63 МПа - красного цвета;
  • тип II - для подачи жидкого топлива (бензина, керосина, уайт- спирита) под давлением не более 0,63 МПа - желтого цвета;
  • тип III — для подачи кислорода под давлением не более 2,0 МПа - синего цвета.

Рукава должны иметь не менее чем трехкратный запас прочности при разрыве гидравлическим давлением. На внеш-ней поверхности рукавов не должно быть пузырей, отслоений, вмятин и других дефектов; внутренняя поверхность должна быть ровной, без складок, пузырей и т.п.

Основные параметры резиновых рукавов

Рукава пожарные напорные (по ГОСТ 472-75) из льняной пряжи сухого прядения в зависимости от дефектов делятся на первый и второй сорта.

Рукава скатываются в круги. На наружном конце каждой партии кругов ставят клеймо, на котором указываются: 1) на-именование и адрес предприятия-изготовителя; 2) внутренний диаметр, мм; 3) наименование группы рукавов; 4) длина рукава в круге, м; 5) масса круга и его номер; 6) дата изготовления ру-кава (год, месяц); 7) обозначение каждого стандарта.

Набивочные, уплотнительные и прокладочные материалы. Для производства сантехнических работ промышленностью вы-пускается ряд вспомогательных материалов, необходимых для уплотнения соединений.

Набивки сальниковые (по ГОСТ 5152-77) применяют для уплотнения сальников арматуры, насосов, машин и аппарату-ры и рассчитаны на широкий диапазон давлений и температур. Набивки, пропитанные антифрикционным составом, обетечивают смазку вращающихся валов и штоков, проходящих че-рез сальник.

Шнуры асбестовые (по ГОСТ 1779-72) с пропиткой анти-фрикционным составом или графитом, замешенным на нату-ральной олифе, применяют для набивки сальников арматуры, компенсаторов , уплотнения секций чугунных котлов, резьбо-вых соединений, а также в качестве изоляционного материала.

Картон асбестовый (по ГОСТ 2850-75) марок КАОН-1 и КАОН-2 используют как теплоизолирующий и огнезащитный материал при температуре изолируемой поверхности не более 500 °С, а также в качестве прокладочного материала для обору-дования, приборов и коммуникаций. Картон марки КАП слу-жит прокладочным материалом. Листы картона не должны иметь трещин, вдавленных мест, посторонних механических включений.

Картон прокладочный (по ГОСТ 9347-74) изготовляют в листах и рулонах плотностью 0,7-0,75 г/см 3 двух марок — А (пропитанный) толщиной 0,3; 0,5; 0,8; 1; 1,5 мм; Б (непропитанный) — толщиной 0,3; 0,5; 0,8,; 1; 1,25; 1,5; 1,75; 2; 2,25; 2,5 мм. Из прокладочного картона изготовляют прокладки для уплотнения фланцевых соединений трубопроводов, транспор-тирующих воду температурой до 100°С. Перед установкой про-кладки необходимо смочить в воде и проварить в натуральной олифе. Поверхность картона должна быть ровной, без короб-лений, складок, морщин, пузырей, неволокнистых включений и давленых пятен.

Пластины резиновые и резинотканевые (по ГОСТ 7338-77), применяемые для изготовления прокладок, уплотнителей кла-панов, амортизаторов и других деталей, выпускаются кислото-щелочестойкие, теплостойкие, морозостойкие и маслобензо-стойкие. Длина листов или лент пластин 0,5-10 м, ширина 200-1750 мм, толщина 0,5-50 мм. Теплостойкие резино-вые пластины остаются работоспособными при эксплуатации в среде воздуха температурой до 90 °С и в среде водяного пара температурой до 140 °С. Морозостойкие резиновые пла-стины остаются работоспособными в условиях эксплуатации при температуре до -45° С. Резиновые пластины всех типов остаются термостойкими при эксплуатации в пределах темпе-ратур от -30 до +50 °С. Листовую резиновую пластину приме-няют для изготовления фланцевых прокладок трубопроводов холодной воды. Резинотканевую пластину применяют при температуре воды до 100 °С.

Паронит (по ГОСТ 481-71) изготовляется из смеси асбе-стовых волокон, растворителя, каучука и наполнителей и вы-пускается в виде листов толщиной 0,4; 0,6; 0,8; 1,5; 2; 3; 4; 5 и 6 мм, размерами 300x400, 400x500, 500x500, 750x1000, ЮООх х1500,1500x1500 и 3000x1500 мм. Из паронита общего назначе-ния делают прокладки для фланцевых соединений трубопро-водов горячей воды и пара с температурой выше 100 °С. Перед установкой прокладки смачивают в горячей воде и смазывают графитом, замешенным на натуральной олифе. Паронит нель-зя хранить вместе (в одном помещении) с органическими рас-творителями, смазочными маслами, кислотами и другими ве-ществами, разрушающими его.

Фибра листовая (по ГОСТ 14613-69) выпускается восьми марок. Например, фибра марки ФП К (прокладочная кислоро-достойкая) изготовляется толщиной от 0,6 до 5 мм, применяет-ся в качестве прокладок для нейтральных газовых сред (кисло-рода, углекислоты и т.п.) при высоких давлениях и нормальных температурах; перед употреблением фибра должна быть тща-тельно обезжирена. Фибра марки ФТ (техническая) применя-ется в качестве уплотнителя в вентилях и кранах систем горяче-го водоснабжения.

Лен трепаный (по ГОСТ 10330-76) в виде пряди, пропитан-ной свинцовым суриком или белилами, разведенными на на-туральной олифе, применяется в качестве уплотнителя в резь-бовых соединениях трубопроводов, транспортирующих воду температурой до 105 °С.

ФУМ — фторопластовые уплотнительные материалы в виде ленты шириной 10-25 мм и толщиной 0,08-0,12 мм и шнура (для фланцевых прокладок). Ленту применяют для уплотнения резьбовых соединений трубопроводов D y < 65 мм, шнур — для Уплотнения контргаек, а также в качестве сальниковой набив-ки вентилей и кранов. Уплотнение из ФУМ водостойко и вы-держивает температуру от -60 до +200 °С.

Смоляная прядь (каболка) представляет собой обработан-ные древесной смолой лубяные волокна — отходы производст-ва волокон пеньки и льна. Выпускается прядь двух сортов: пер-вый сорт — из пенькового волокна, второй сорт — из смеси во-локон пеньки и льна. Прядь применяют для заделки раструбов чугунных и керамических труб.

Пеньковый канат (по ГОСТ 483-75), пропитанный смолой (для предохранения от гниения) или без пропитки, применяют для уплотнения раструбов чугунных и керамических труб.

Вспомогательные материалы. Олифа натуральная льняная и конопляная (по ГОСТ 7931-76) применяется для приготовле-ния суриковой замазки, разведения грунтовки и густотертых красок, а также для пропитывания картонных уплотнительных прокладок. Олифа должна храниться в плотно закрытой таре.

Олифа оксоль (по ГОСТ 190-78) в ряде случаев может слу-жить заменителем натуральной олифы. Изготовляется уплот-нением льняного масла и продуванием его воздухом в присут-ствии сиккатива с последующим добавлением растворителя (уайт-спирита).

Сурик свинцовый (по ГОСТ 19151-73) — тяжелый порошок яркого красно-оранжевого цвета, выпускается пяти марок: М-1, М-2, М-3, М-4 и М-5. Суриком, разведенным на нату-ральной олифе (2 масс. ч. сурика й 1 масс. ч. олифы), пропиты-вают льняную прядь, используемую в качестве уплотнителя в резьбовых соединениях трубопроводов отопления с темпера-турой теплоносителя до 105 °С, трубопроводов горячего водо-снабжения и газоснабжения.

Белила свинцовые густотертые (по ГОСТ 12287-77) в виде пасты из смеси свинцовых белил, тяжелого шпата и олифы или сырого льняного или подсолнечного масла выпускают трех ма-рок: МА-011, МА-011-Н-1 и МА-ОИ-Н-2. Служат для тех же целей, что и свинцовый сурик.

Белила цинковые густотертые (по ГОСТ 482-77) представ-ляют собой пасту из сухих цинковых белил (или смеси их с на-полнителем), затертых на натуральной льняной олифе или на растительных маслах с добавкой сиккатива, и выпускаются се-ми марок: ММ-00 спец., М-00, М-0, В-2-00, В-2-0, В-4-00, В-4-0. Эти белила после разведения их натуральной глифтале- вой или пентафталевой олифой до малярной консистенции применяют для окраски поверхностей. Для внутренних работ допускается разведение белил олифой оксоль.

Белила цинковые, разведенные натуральной олифой, служат для пропитывания льняной пряди, применяемой в качестве уплотнителя в резьбовых соединениях трубопроводов холод-ной воды.

Графит тигельный (по ГОСТ 4596-75) применяют как со-ставную часть сальниковых набивок и мастик при соединении труб, сборке чугунных секционных котлов, пропитке паронитовых прокладок и др.

Для уплотнения фланцевых соединений применяются плоские эластичные прокладки из паронита, резины, картона, фторопласта-4 и композиционных материалов на их основе. Согласно ГОСТ 15180-86, исполнение прокладок, в зависимости от исполнения уплотнительных поверхностей фланцев, должно соответствовать данным, указанным в табл. 1 и 2.

Таблица 1

Исполнения прокладок Исполнения уплотнительных поверхностей по ГОСТ 12815-80 Чертеж
А 1
Б 2; 3
В 4; 5
Г 8; 9
Д 1; 5

Таблица 2

Исполнение прокладок Условное давление Р у, МПа (кгс/см²) Условный проход Д у, мм
А 0,1; 0,25 (1; 2,5) 10-3000
0,63(6,3) 10-2400
1,0(10) 10-2000
1,6(16) 10-1600
2,5(25) 10-1400
4,0(40) 10-1200
Б, В, Г 0,1-4,0 (1,0-40) 10-800
6,3(63) 10-600
10(100) 10-400
16(160) 15-300
Г 20(200) 15-250
Д 0,1-0,63 (1,0-6,3) 40-800
1,0-4,0 (10-40) 25-800
6,3(63) 25-600
10(100) 25-400
16(160) 25-300
20(200) 25-250

Прокладочные материалы должны обладать: упругостью, стойкостью к среде, в которой работают, сохранять свои физические свойства при рабочей температуре среды и не подвергаться коррозии. При использовании металлических прокладок металл не должен пластически деформировать уплотняющие поверхности фланца, поэтому металл прокладок должен иметь твердость и предел текучести ниже, чем металл уплотняемых поверхностей фланцев, не должен образовывать с металлом газового оборудования гальваническую пару.

Паронит (ГОСТ 481-80). Изготавливают из асбеста и каучука путем вулканизации и вальцевания под большим давлением. Является универсальным прокладочным материалом для уплотнения плоских разъемов с различными средами (холодных и горячих газов, воздуха, пара, масел и нефтепродуктов и др.). В зависимости от назначения паронит изготавливают семи марок. Для уплотнения соединений на газопроводах природного газа и в установках сжиженных газов рекомендуется применять паронит марки ПМБ (в диапазоне температур от −40 до +60 °С и предельного давления до 1,6 МПа). Паронит ПМБ выпускается листами длиной 500, 1000, 1500 мм и шириной 500, 750, 1000 мм, толщиной 0,4; 0,5; 0,6; 0,8; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0 мм. Размеры прокладок из паронита должны соответствовать требованиям ГОСТ 15180-86. Перед установкой паронитовую прокладку следует покрыть с обеих сторон сухим графитовым порошком для предохранения от «прилипания» к плоскости фланца.

Пластмассы . Для прокладок фланцевых соединений газопроводов могут применяться различные пластмассы: полиэтилен высокой плотности (ВД) по ГОСТ 16338-77 и низкой плотности (НД) по ГОСТ 16337-77Е, толщиной 1-4 мм, фторопласт-4 (ПТФЭ) толщиной 1-4 мм по ГОСТ 10007-80Е.

Резина . Высокая эластичность позволяет легко достичь плотности между металлической поверхностью фланца и прокладкой при малых усилиях затяжки. Резина практически непроницаема для газов и жидкостей, имеет достаточную химическую стойкость. Поскольку чрезмерное сжатие ухудшает свойства резины, деформацию ее необходимо ограничить до 30-50 % от допускаемой. Выпускаемая промышленностью резина техническая листовая без тканевых или иных прокладок по ГОСТ 7338-77 предназначена для изготовления прокладок, клапанов и других деталей и производится пяти типов: кислотно-щелочестойкая, теплостойкая, морозостойкая, маслобензостойкая и пищевая.

В зависимости от твердости техническая резина подразделяется на мягкую (м), средней твердости (с) и повышенной твердости (п).

В зависимости от стойкости к воздействию масла и бензина маслобензостойкая резина подразделяется на марки А и Б.

Для фланцевых соединений систем газораспределения с рабочим давлением до 0,6 МПа рекомендуется применять прокладки, изготовленные из листовой маслобензостойкой резины (МБ) марок А и Б (без тканевой основы) по ГОСТ 17133-83 и ГОСТ 7338-77 толщиной 3-5 мм.

Картон . Если по условиям работы прокладкам требуются огнестойкие свойства, то для их изготовления рекомендуется применять:

  • асбестовый картон (ГОСТ 2850-80) марок КАОН-1, КАОН-2. Выпускается листами размерами 900×900, 1000×800, 1000×900 и 1000×1000, толщиной 2; 2,5; 3; 3,5; 4; 5 мм;
  • асбестовое армированное полотно (ГОСТ 2198-76) представляет собой прорезиненную и прографитизированную ткань полотняного или саржевого переплетения на основе латунной проволоки, а по утку * — из асбестовой пряжи, армированной латунной проволокой. Листы полотна выпускаются размерами 750×1500, 1000×1500 и толщиной 0,6; 0,7; 1,1 мм.

Металлические прокладки для фланцевых и других видов соединений изготавливают из листового проката в виде плоских колец. Металлические прокладки обеспечивают достаточную плотность при высоких давлениях и температурах среды, имеют коэффициент линейного расширения, близкий к коэффициенту расширения материала фланцев. К недостаткам применения металлических прокладок следует отнести необходимость создания больших усилий для обеспечения плоскости соединения, относительно низкие упругие свойства материала прокладок, высокую стоимость по сравнению с эластичными прокладками. Для уплотнения соединения деталей, оборудования установок сжиженных газов и на газопроводах всех давлений рекомендуемыми материалами для изготовления металлических прокладок являются:

  • алюминий листовой отоженный по ГОСТ 13722-78, ленты из алюминия или алюминиевых сплавов (отоженных) по ГОСТ 13726-78, ГОСТ 21361-76, толщиной 1-4 мм;
  • медь листовая мягкая марок М1, М2 по ГОСТ 495-77.
  • льняную чесаную прядь (по ГОСТ 10330-76), которая в процессе соединения пропитывается суриком (по ГОСТ 19151-73) или свинцовыми белилами (по ГОСТ 12287-77), разведенными олифой (по ГОСТ 7931-76);
  • ленты из фторопласта-4 (ФУМ-В), толщиной 0,1-1,5 мм по ТУ 6-05-1388-70;
  • другой уплотнительный материал, обеспечивающий герметичность соединения.

В качестве набивочного материала для сальников запорной арматуры наиболее эффективен фторопластовый уплотнительный материал марки ФУМ-В. Выпускается круглого сечения диаметром 2,0-16,0 мм и квадратного сечения от 5×5 мм до 16×16 мм для применения в качестве химически стойкого самосмазывающего набивочного материала (в подвижных соединениях типа сальника) и прокладочного материала (в неподвижных соединениях). Соединения работают в диапазоне температур от −60 до +150 °С и при давлении до 6,0 МПа (предприятие-изготовитель ОАО «Пластополимер», г. Санкт-Петербург).

Характеристики отечественных уплотнительных материалов представлены в таблицах 3 и 4.

* Уток — поперечное направление нити в ткани.

Таблица 3

Набивка плетеная сальниковая Конструкция набивки Размеры (диаметр, сторона квадрата), мм Масса 1 см³ набивки, г

Условия применения

Предельное давление среды, МПа, не более Предельная температура среды, °С, не более
Пеньковая пропитанная (ПП) Шнур, сплетенный из льняной (ГОСТ 16078-70 * ), пеньковой или джутовой пряжи (ГОСТ 4668-75 * ), пропитанный антифрикционным составом Не менее 0,9 16,0 100
4, 5, 6, 8, 10, 13, 16, 22, 25, 28
8, 10, 13, 16, 19, 22, 25, 28, 32, 35, 38, 42, 46, 50
Асбестовая сухая (АС) Шнур, сплетенный из асбестовой нити (ГОСТ 1770-74 * ) Не более 1,1 4,5 400
1) сквозного плетения, квадратный
2) с однослойным оплетением сердечника, круглый или квадратный
3) с многослойным оплетением сердечника 8, 10, 13, 16, 19, 22, 25, 28, 32, 35, 38, 42
Асбестовая пропитанная (АП) Шнур, сплетенный из асбестовой нити (ГОСТ 1770-74 * ), пропитанный антифрикционным составом Не менее 0,9 4,5 300
1) сквозного плетения, квадратный 4, 5, 6, 8, 10, 13, 16, 19, 22, 25, 28
2) с однослойным оплетением сердечника, круглый или квадратный 5, 6, 8, 10, 13, 16, 19, 22, 25
3) с многослойным оплетением сердечника, круглый или квадратный 8, 10, 13, 16, 19, 22, 25, 28, 32, 35, 38, 42, 46, 50
Асбестовая маслобензостойкая (АМБ) Шнур, сплетенный из асбестовой нити (ГОСТ 1779-83 * ), пропитанный антифрикционным маслобензостойким составом Не менее 0,8 3,0 300
1) сквозного плетения, квадратный 4, 5, 6, 8, 10, 13, 16, 19, 22, 25, 28
2) с многослойным оплетением сердечника, квадратный 4, 5, 6, 8, 10, 13, 16, 19, 22, 25, 28, 32, 35, 38, 42, 46, 50
Следующая страница>>

§ 15. ПРОКЛАДОЧНЫЕ, УПЛОТНИТЕЛЬНЫЕ И НАБИВОЧНЫЕ МАТЕРИАЛЫ

В машиностроении широко применяются прокладочные, уплотнительные и набивочные материалы.

Асбест представляет собой минерал, обладающий способностью расщепляться на тонкие гибкие волокна, допускающие при достаточной их длине скручивание в нить. Асбест устойчив при температуре нагрева до 600°, температура его плавления 1500°. Асбест слабо сопротивляется воздействию на него кислот. Он подразделяется на асбест кусковой и асбест механического обогащения, состоящий из смеси волокон различной длины и их агрегатов (асбест с волокнами неизменной формы). Из длинных волокон асбеста изготовляются шнуры, из коротких - асбестовый картон. Из асбеста с железом или медной фольгой изготовляются прокладки для нагнетательной трубки масляного насоса, для головки цилиндра и др. Секторы или диски трения в муфтах сцепления трансмиссии выполнены из асбестовой тканой ленты, имеющей прослойку из латунных проволок и пропитанной бакелитовой смолой.

Фибра листовая представляет собой тряпичную (бумажную) массу, пропитанную раствором хлористого цинка и затем спрессованную. Фибра применяется в тракторостроении. Из фибры изготовляются изоляционные шайбы для стартера, упорные шайбы якоря, шайбы подпятника пружины муфты сцепления и т. д. В зависимости от назначения листовая фибра разделяется на пять марок: ФТ (техническая), ФЭ (электротехническая), ФК и ФП (поделочная), ФПК (прокладочная кислородостойкая). Фибра марки ФТ изготовляется в листах толщиной 0,6-25 мм. Предел прочности при растяжении фибры толщиной 0,6-0,8 мм - 600 кгс/см 2 . Фибра марки ФТ хорошо сопротивляется маслопоглощаемости. Недостатком фибры является ее высокая водопоглощаемость (за 24 час до 65%), что приводит после высыхания к короблению и изменению формы.

Паронит изготовляется из асбеста, каучука и наполнителей. Паронит поставляется в виде листов серого цвета. Он применяется в качестве прокладок для уплотнения мест соединения металлических поверхностей, работающих в средах воды, насыщенного и перегретого пара, воздуха и инертных газов (азот и др.). Особенно эффективно применение паронита для уплотнения мест соединения деталей, работающих в средах бензина, керосина и масла. Размеры листов паронита от 300X400 до 1200X1500 мм при толщине 2,5-6,0 мм. Паронит выдерживает давление 50 кгс/см 2 и температуру 450° в средах воды и пара, а в средах бензина, керосина и масла - 75 кгс/см 2 при нормальной температуре. Удельный вес паронита не более 2 г/см 3 .

Техническая кожа применяется для изготовления кожаных деталей машин, прокладок, приводных ремней и других разнообразных изделий.

Пробка используется для изготовления прокладок. Прессованной пробковой крошкой уплотняют различные соединения. Для предупреждения выкрашивания пробковые прокладки обычно оклеивают с двух сторон картоном.

Клингерит является прокладочным материалом, изготовляемым из асбеста в смеси с графитом, суриком, окисью железа и каучуком. Клингерит поставляется в виде листов.

Клингеритовые прокладки являются устойчивыми при температурах до 185° и давлениях до 12 атм. Перед укладкой в места соединений клингеритовые прокладки смазывают маслом. Под воздействием высокой температуры клингеритовые прокладки становятся прочными и эластичными.

Для плотного прилегания к соединяемым поверхностям твердые прокладки обычно устанавливают на белилах, жидком стекле и свинцовом сурике.

Войлок технический полугрубошерстный в зависимости от назначения изготовляемых из него деталей подразделяется на следующие виды:

1) войлок для сальников, задерживающих смазочные масла в местах трения и предохраняющих места трения от попадания в них воды и пыли;

2) войлок для изоляционных прокладок, применяемых между металлическими поверхностями и предохраняющих их от коррозии, истирания, попадания посторонних веществ, а также для смягчения ударов и сотрясений;

3) войлок для фильтров, очищающих масла.

Толщина войлока 6-12 мм, влажность 12%, предел прочности при растяжении 15-25 кгс/см 2 и удлинение 100-125%.

В качестве уплотняющего материала в тракторостроении применяется войлок тонкошерстный белый и плотный. Из такого войлока изготовляются фитили для смазки бегунка в прерывателе магнето, одинарные войлочные сальники и др.

Войлочные сальники перед установкой их на трактор проваривают в масле. Влажность тонкошерстного войлока 10%, предел прочности на растяжение по длине 23 кгс/см 2 , а по ширине 15 кгс/см 2 . Удлинение войлока по длине составляет 60%, а по ширине 70%, Из тонкошерстного фетра изготовляют шайбы, фильц прерывателя магнето и др.