Оборудование для котельных: дополнительные приборы. Основное и вспомогательное оборудование котельных Основное и вспомогательное оборудование водогрейной котельной

Подвод и слив воды

Котельная установка представляет собой комплекс устройств, предназначенный для преобразования химической энергии топлива в тепловую энергию горячей воды или пара требуемых параметров.

Виды котельного оборудования

В зависимости от назначения различают следующие типы котельного оборудования:

  • энергетические, вырабатывающие пар для паротурбогенераторов;
  • производственно-отопительные, вырабатывающие пар и нагревающие воду для удовлетворения технологических потребностей производства, отопления, вентиляции и горячего водоснабжения;
  • отопительные, вырабатывающие теплоту для отопления, вентиляции и горячего водоснабжения жилых и общественных зданий, а также для промышленных и коммунальных предприятий;
  • смешанного назначения, вырабатывающие пар для снабжения одновременно паровых двигателей, технологических нужд, отопительно-вентиляционных установок и горячего водоснабжения.

Котельные установки по виду вырабатываемого теплоносителя разделяют на три основных класса : паровые котельные установки для производства водяного пара, водогрейные котельные установки для получения горячей воды и смешанные котельные установки, оборудованные паровыми и водогрейными котлами, используемыми для получения пара и горячей воды одновременно или попеременно.

Основные и вспомогательные элементы котельных установок

Котельная установка состоит из котельного агрегата и вспомогательного оборудования.

В состав котельного агрегата входят топочное устройство, паровой котёл, пароперегреватель, водяной экономайзер, воздухоподогреватель, каркас с лестницами и помостами для обслуживания, обмуровка, тепловая изоляция, обшивка, арматура, гарнитура и газоходы. К вспомогательному оборудованию относятся дутьевые вентиляторы, дымососы, питательные, подпиточные и циркуляционные наносы, водоподготовительные и пылеприготовительные установки, системы топливопередачи, золоулавливания и шлакозолоудаления. При сжигании жидкого топлива к вспомогательному оборудованию относится мазутное хозяйство, при сжигании газообразного топлива – газорегуляторный пункт или газорегуляторная установка.

Паровым котлом называется устройство, состоящее из топки, испарительных поверхностей для испарения пара, потребляемого вне этого устройства, с давлением выше атмосферного за счёт теплоты, выделяющейся при сжигании топлива. Водогрейным котлом называется теплообменное устройство, в котором за счёт источника энергии (топлива) нагревается вода, находящаяся под давлением выше атмосферного и используемая в качестве теплоносителя вне самого устройства.

Топочное устройство котлоагрегата предназначено для сжигания топлива и превращения его химической энергии в теплоту. Обмуровка котла – это система огнеупорных и теплоизоляционных ограждений или конструкций котла, предназначенных для уменьшения тепловых потерь и обеспечения газовой плотности. Несущую металлическую конструкцию, воспринимающую вес котла с учётом временных и особых нагрузок и обеспечивающую требуемое взаимное расположение элементов котла, называют каркасом.

Пароперегреватель – устройство для повышения температуры пара выше температуры насыщения, соответствующей давлению в котле. Он представляет собой систему змеевиков. Соединенных на входе насыщенного пара с барабаном котла и на выходе – с камерой перегретого пара.

Водяной экмайзер – устройство, обогреваемое продуктами сгорания топлива и предназначенное для подогрева или частичного испарения поступающей в котёл воды.

Воздухоподогреватель – устройство для подогрева воздуха продуктами сгорания топлива перед подачей его в топку котла.

Арматура – специальные устройства, предназначенные для регулирования расхода транспортируемого вещества, отключения и включения потоков газа, пара и воды. По направлению арматуру подразделяют на запорную, регулирующую, предохранительную, контрольную и специальную. Запорная арматура (вентили, задвижки и краны) предназначена для периодического включения или отключения отдельных участков трубопроводов. Регулирующая арматура (регулирующие вентили и клапаны) служит для изменения или поддержания в трубопроводах давления и расхода транспортируемого вещества. Предохранительную арматуру (грузовые, пружинные и обратные клапаны) применяют для автоматического открытия прохода, если давление превысит допустимое значение, а так же для предотвращения обратного движения жидкости или газа. Контрольную арматуру (контрольные краны, указатели уровня, трехходовые краны для манометров) используют для проверки наличия вещества в трубопроводе и определения его уровня. Специальная арматура (конденсатоотводчики и влагомаслоотделители) служит для удаления конденсата, отделения масла и других продуктов от газа.

К гарнитуре котла относятся устройства для обслуживания газотходов и топки котла: лазы, гляделки, затворы шлаковых и золовых бункеров, газовые и воздушные клапаны и заслонки, взрывные клапаны, а так же обдувочные аппараты. Лазы предназначены для осмотра и ремонта поверхностей нагрева, гляделки – для визуального осмотра топки и газоходов с наружной стороны котла, затворы шлаковых и золовых бункеров – для периодического удаления золы и шлака из бункеров, газовые и воздушные клапаны и заслонки – для отключения газотходов, регулирования тяги и дутья. Взрывные клапаны выпускают дымовые газы при повышении давления в топке или газоходе котла, предохраняя их от разрушения. Обдувочные аппараты применяют для удаления с поверхностей нагрева золы и шлака (струей пара или сжатого воздуха).

Питательные и подпиточные устройства (насосы, баки, трубопроводы) предназначены для подачи воды в котел или тепловую сеть (систему отпления)

Тягодутьевые устройства предназначены для подвода в топку котла воздуха, необходимого для сгорания топлива, и отвода из котла продуктов сгорания. Состоят они из дутьевых вентиляторов, воздуховодов, газоводов, дымососов и дымовой трубы, при помощи которых обеспечиваются подача необходимого количества воздуха в топку, движение продуктов сгорания по газоходам и удаление их в атмосферу.

Водоподготовительные устройства служат для подогрева и умягчения питательной воды и состоят из аппаратов и приспособлений, обеспечивающих очистку от механических примесей и растворенных в ней накипеобразующих солей, а также для удаления из неё газов.

Топливоподготовительное устройство в котельных, работующих на пылевидном топливе, предназначено для измельчения топлива до пылевидного состояния; его оборудуют дробилками, сушилками, мельницами, питателями, вентиляторами, транспортерами и пылегазопроводами.

Устройство для удаления золы и шлака состоит из гидравлических систем и механических приспособлений: транспортеров, вагонеток и др.

Топливный склад предназначен для хранения топлива; его оборудуют механизмами для разгрузки и подачи топлива в котельную или в топливоподготовительное устройство.

К устройствам топлвого контроля и автоматического управления относятся контрольно-измерительные приборы и автоматы, обеспечивающие бесперебойную и согласованную работу отдельных устройств котельной установки для выработки необходимого количества пара заданных параметром (температуры, давления)

При сжигании пылевидного топлива применяют пылеугольные горелки, газообразного топлива – газовые горелки, топочного мазута – мазутные форсунки, газообразного топлива и топочного мазута – комбинированные газомазутные горелки.

Паровые и водогрейные котлы

По конструктивному устройству котлы делятся на две группы: с естественной и принудительной циркуляцией. К первой группе относятся жаротрубные, локомобильные, вертикальные цилиндрические, вертикально- и горизонтально-водотрубные котлы. Ко второй группе относятся котлы прямоточные и специальных конструкций.

Важнейшие эксплуатационные показатели работы паровых котлов – паропроизводительность и тепловое напряжение поверхности нагрева, водогрейных котлов – теплопроизводительность и тепловое напряжение поверхности нагрева.

Паропроизводительностью котла называется отношение массы пара, вырабатываемое котлом, к интервалу его работы. Определяется она в килограммах в час или в тоннах в час. Часть барабана котла, заполненная водой, называется водяным объемом, а пространство над водой – паровым объемом. Поверхность, разграничивающая объем горячей воды и пара, называется зеркалом испарения. Поверхность, которая с одной стороны омывается газообразными продуктами сгорания, а с другой стороны водой, называется поверхностью нагрева котла. Отношение паропроизводительности к поверхности нагрева называется напряжением поверхности нагрева.

Поверхность нагрева, воспринимающая теплоту радиацией (излучением) от раскаленного слоя топлива в топке, называется радиационной поверхностью нагрева . Поверхность нагрева остальных частей котла, воспринимающая теплоту продуктов сгорания путем соприкосновения с ними, называется конвективной.

Горячими газами омывается только та часть котла, которая с внутренней стороны охлаждается водой. Нельзя допускать обогрев продуктами сгорания парового объема барабана котла, так как это приводит к перегреву металла его стенок и образования на них отдулин. Линия, отделяющая обогреваемую газами поверхность от необогреваемой, называется огневой линией .

Низший уровень воды, при котором нет ещё опасности обнаружения стенок барабана котла, называется наинизшим допустимым уровнем воды . Он должен быть на 100 мм выше обогреваемых газообразными продуктами сгорания стенок барабана котла. Чтобы образующийся пар не уносил с собой значительное количество влаги, уровень воды не должен превышать некоторый предел, называемый верхним уровнем воды . Наинизший допустимый уровень воды должен быть не менее чем на 25 мм выше нижней видимой кромки стекла водоуказательного прибора, а наивысший допустимый уровень – не меньше чем на 25 мм ниже верхней видимой кромки стекла прибора. Объем воды, заключенный между нижним и верхним уровнями воды, называется питательным объемом. Питательный объем определяет то количество воды, которое может быть превращено в пар без подпитки котла водой.

Теплопроизводительностью (тепловой мощностью) водогрейного котла называют величину, равную отношению количества теплоты, воспринимаемой водой в водогрейном котле, к продолжительности его работы.

Для водогрейных котлов делят теплопроизводительность на площадь поверхности нагрева котла и получают тепловое напряжение нагрева.

Пароводяная смесь, образующася в кипятильных трубах водотрубных котлов, поступает в верхний барабан, в котором пар отделяется от жидкости, а жидкость по опускным трубам поступает через коллектор вновь для нагрева в кипятильных трубах. Система кипятильных (обогреваемых) труб, барабан, опускные трубы и коллекторы для распределения котловой воды называется циркуляционным контуром котла .

Для надежной работы котла большое значение имеет организация движения воды в циркуляционном контуре, которое называется циркуляцией . Циркуляция может быть естественной и принудительной естественная циркуляция происходит под действием сил, обусловленных разностью плотностей воды на необогреваемых участках (опускных трубах) и пароводяной смеси на подогреваемых участках (кипятильных, экранных трубах). Расход воды через любой циркуляционный контур значительно превышает количество образующего в нем пара. Отношение количества воды, вошедшей в контур, к количеству образующегося в нем пара, называется кратностью циркуляции. В котлах с принудительной циркуляцией движение воды по испарительному контуру осуществляется специальными насосами.

Котёл типа Е-1,6-0,9

Сепарационные устройства. Влажный насыщенный пар, получаемый в барабане котлоагрегатов низкого и среднего давлений, может уносить с собой капли котловой воды, содержащей растворенные в ней соли. В котлоагрегатах высокого и сверхвысокого давлений загрязнение пара обусловливается еще и дополнительным уносом солей кремниевой кислоты и соединений натрия, которые растворяются в паре.

Примеси, уносимые с паром, откладываются в пароперегревателе, что крайне нежелательно, так как может привести к пережогу труб пароперегревателя. Поэтому пар перед выходом из барабана котла подвергается сепарации, в процессе которой капли котловой воды отделяются и остаются в барабане. Сепарация пара осуществляется в специальных сепарирующих устройствах, в которых создаются условия для естественного или механического разделения воды и пара.

Естественная сепарация происходит вследствие большой разности плотностей воды и пара. Механический инерционный принцип сепарации основан на различии инерционных свойств водяных капель и пара при резком увеличении скорости и одновременном изменении направления или закручивания потока влажного пара.

На рис. 19.22 показаны принципиальные схемы сепарирующих устройств. На рис. 19.22,а показан принцип естественной сепарации. Гашение большой скорости потока пароводяной смеси, вытекающей из подводящих экранных труб, происходит в объеме воды, которая находится в барабане. Скорость пара в барабане над уровнем воды незначительна (0,3 - 0,5 м/с), что способствует сепарации капель воды и пара.

В схеме, показанной на рис. 19.22,б, пароводяная смесь направляется на сплошной отбойный щит. Вода стекает по листу, а пар поступает в паровое пространство и, проходя через пароприемный дырчатый лист, выводится из барабана. В этой схеме механическая сепарация сочетается с естественной в паровом объеме барабана.

Внутри барабанный циклон, показанный на рис. 19.22,г, служит для интенсивного закручивания потока пароводяной смеси. Под действием центробежных сил вода отбрасывается на стенку сепаратора и в виде пленки стекает в водяной объем.

Циклонный принцип сепарации отличается высокой эффективностью. При большой нагрузке парового объема барабана применяют выносные циклоны , к которым подключается часть труб испарительной поверхности котлоагрегата.

Рис. 19.22. Схемы сепарационных устройств.

а - погружной дырчатый щит: 1 - дырчатый щит; 2 - пароприемный дырчатый щит; б - отбойные и распределительные щиты; 1 - отбойный щит; 2 - пароприемный дырчатый щит; в - жалюзийный сепаратор; 1 - отбойный щит; 2 - жалюзийный сепаратор; 3 - пароприемный дырчатый щит; г - циклонный сепаратор; 1 - циклон; 2 - пароприемный дырчатый щит.

Рис. 19.23. Схема промывки пара питательной водой.

1 - щит с промывочными корытами; 2 - жалюзийный сепаратор; 3 - пароприемный щит; 4 - место отвода пара; 5 - место подвода питательной воды (5а - на промывку; 5б - под уровень); 6 - место подвода пароводяной смеси из испарительных труб; 7 - опускные трубы; 8 - дырчатый щит.

Выносные циклоны размещаются вне котлоагрегата (см. рис. 19.18).

Высокая степень очистки пара достигается при пленочной сепарации. Принцип пленочной сепарации основан на образовании устойчивой пленки при слиянии мельчайших капель воды в момент соприкасания потока влажного пара с каким - либо препятствием (вертикальная или горизонтальная плоскости и т.п.). Схема пленочного жалюзийного сепаратора, показанного на рис. 19.22,в, дает представление о методе пленочной сепарации. На стенках волнистых каналов образуется пленка воды, через потолочный дырчатый лист которая стекает вниз, а пар направляется к выходу из барабана.

Рассмотренные схемы методов получения чистого пара обеспечивают степень сухости х = 0,98 - 0,99. Для более тонкой очистки пара от примесей его очищают питательной водой. Схема промывки пара показана на рис. 19.23.

Перед промывкой пар проходит естественную сепарацию в паровом объеме, а затем барботирует через слой питательной воды, в которой содержится очень мало солей. В результате интенсивного массообмена соли задерживаются питательной водой. Унос капель питательной воды не представляет уже большой опасности для работы пароперегревателя.

Вспомогательное оборудование котельной установки - тягодутьевые устройства . Для нормальной работы котельного агрегата необходимы непрерывная подача воздуха для горения топлива и непрерывное удаление продуктов сгорания.

В современных котельных установках широко распространена схема с разрежением по газоходам. К недостаткам этой схемы следует отнести наличие присосов воздуха в газоходы через неплотности в ограждениях и работу дымососов на запыленных газах. Достоинство такой схемы - отсутствие выбивания и утечек дымовых газов в помещение котельной, так как воздух в топку нагнетает вентилятор, а дымовые газы удаляет дымосос. В последнее время в мощных энергетических котельных установках широко применяется схема с наддувом. Топка и весь газовый тракт находятся под давлением 3 - 5 кПа. Давление создается мощными вентиляторами ; дымосос отсутствует. Основной недостаток этой схемы - трудности, связанные с обеспечением надлежащей герметичности топки и газоходов котельного агрегата.

При движении газов по газоходам возникают потери напора вследствие аэродинамического сопротивления трению и местных сопротивлений (трубные пучки, сужения, повороты и т. д.). Суммарная потеря напора на отдельном участке складывается из потери на трение ∆h тр и потери на преодоление местного сопротивления ∆ h мест, т. е.

здесь λ - коэффициент трения; l,d экв - длина и эквивалентный диаметр участка; р - плотность газа; w - скорость газа; § м - коэффициент местного сопротивления.

При движении газов в вертикальных газоходах необходимо учитывать естественный напор, возникающий вследствие разности плотностей горячих дымовых газов и окружающего воздуха. Этот напор, называемый самотягой (∆h сам), в подъемных газоходах направлен на преодоление сопротивлений, а в опускных препятствует движению и является отрицательной величиной.

В целом для котельной установки потери напора составляют

∆Н = ∆h т + ∑∆h тр + ∑∆h мест + ∆h сам (19.25)

где ∆h т - разрежение, поддерживаемое в верхней части топки (20 - 40 Па).

Величину ∆Н определяют по нормам аэродинамического расчета котельных агрегатов. Преодоление ∆Н осуществляется тягой, которая может быть естественной и искусственной. Естественная тяга создается дымовыми трубами, а искусственная - с помощью специальных центробежных вентиляторов (дымососов). Для мощных котлоагрегатов используют дымососы осевого типа. Естественная тяга обусловливается разностью плотностей горячих дымовых газов и холодного окружающего воздуха. Высота столбов горячих газов и холодного воздуха при этом принимается одинаковой (рис. 19.24).

Рис. 19.24. К расчету естественной таги, создаваемой дымовой грубой.

Максимальная тяга, создаваемая трубой, должна быть на 20% выше суммарной потери напора. Дымовые трубы бывают кирпичными, железобетонными и стальными. При высоте до 80 м наибольшее распространение получили кирпичные трубы, так как они дешевле, устойчивее по отношению к температурным колебаниям (по сравнению с бетонными) и не подвержены вредному влиянию сернистых газов, как стальные.

Высота трубы должна отвечать санитарно - техническим требованиям, которыми предусматривается определенный радиус рассеяния дымовых газов во избежание превышения допустимой запыленности ими атмосферы.

Для получения тяги необходимо увеличивать высоту трубы или температуру уходящих газов. Однако при использовании любого из этих способов необходимо иметь в виду, что высота трубы ограничена ее стоимостью и прочностью, а температура газов - оптимальным значением КПД котельной установки. Поэтому большинство современных котельных установок оборудуют искусственной тягой, для создания которой применяют дымосос, преодолевающий сопротивление газового тракта. В этом случае высоту трубы выбирают в соответствии с санитарно - техническими требованиями.

Мощность привода дымососа, кВт, можно рассчитать по формуле

где V д - производительность дымососа,м 3 /с; Н д - (∆Н - ∆h caм) β 2 - разрежение, создаваемое дымососом, Па (здесь ∆Н - сопротивление газового тракта, Па; ∆h сам - самотяга дымовой трубы, Па); β 2 = 1,1 ÷ 1,2 - коэффициент запаса по создаваемому разрежению; β 3 - коэффициент запаса по мощности, равный 1,1; ȵ д - КПД дымососа.

Величина V д определяется по равенству

V д - V r В р Т д.тр β 1 /273, (19.27)

где Vr - расход газов, м 3 /м 3 ; В р - расход топлива, м 3 /с (кг/с); Т д.тр - температура газов на входе в дымовую трубу, К; β 1 - 1,05 ÷ 1,1 - коэффициент запаса по производительности.

Напор воздуха, создаваемый вентилятором, также следует определять на основании аэродинамического расчета воздушного тракта (воздуховодов, воздухоподогревателя, горелочного устройства и т.д.).

Максимальный напор вентилятора должен быть на 10% больше β2 = 1,1) потерь напора в воздушном тракте котельного агрегата. Мощность привода дутьевого вентилятора , кВт, определяют по формуле

N в = V вз Н в β 3 10 -3 /ȵ в (19.28)

где V вз - расход воздуха, м 3 /с; Н в = ∆Нβ 2 - напор вентилятора, Па (здесь ∆ Н - потеря напора в воздушном тракте, Па; β 2 = 1,1 - коэффициент запаса по создаваемому напору); β 3 = 1,1 - коэффициент запаса по мощности.

Величина V вз определяется по равенству

где β 1 = 1,05 - коэффициент запаса по производительности; V 0 - теоретическое количество воздуха, м 3 /м 3 (м 3 /кг); α т + α а = α вз - коэффициент избытка воздуха; Т вз - температура воздуха перед вентилятором; Н баром - барометрическое давление, кПа.

Вспомогательное оборудование котельной установки - основы водоподготовки . Одной из основных задач безопасной эксплуатации котельных установок является организация рационального водного режима, при котором не образуется накипь, на стенках испарительных поверхностей нагрева, отсутствует их коррозия и обеспечивается высокое качество вырабатываемого пара. Пар, вырабатываемый в котельной установке, возвращается от потребителя в конденсированном состоянии; при этом количество возвращаемого конденсата обычно бывает меньше, чем количество выработанного пара.

В производственных котельных основная безвозвратная потеря - это загрязненный конденсат пара, потребляемого в технологических процессах. Очистка этого конденсата от попавших в него примесей органических и минеральных веществ экономически невыгодна. Величина этой потери зависит от характера производства, где используется пар. Например, потеря конденсата на предприятиях машиностроительной промышленности составляет 20%, промышленности строительных материалов - 30, химической - 40, нефтеперерабатывающей - 50%. В отопительных котельных доля конденсата, не возвращаемого потребителем тепла, может меняться в широких пределах - от нескольких процентов до 100% в зависимости от схемы теплоснабжения и характера теплового потребления. Другая часть потери конденсата утечки в теплотрассах (0,5 - 1%). Кроме того, определенная часть воды (5 - 7%) выводится из котлоагрегата при непрерывной продувке.

Потери конденсата и воды при продувке восполняются за счет добавки воды из какого - либо источника. Эта вода должна быть соответствующим образом подготовлена до поступления в котельный агрегат. Вода, прошедшая предварительную подготовку, называется добавочной, смесь возвращаемого конденсата и добавочной воды - питательной, а вода, которая циркулирует в контуре котла, - котловой.

От качества питательной воды зависит нормальная работа котельных агрегатов. Физико - химические свойства воды характеризуют следующие показатели: прозрачность, содержание взвешенных веществ, сухой остаток, солесодержание, окисляемость, жесткость, щелочность, концентрация растворенных газов (СО 2 и О 2).

Прозрачность характеризуется наличием взвешенных механических и коллоидных примесей, а содержание взвешенных веществ определяет степень загрязнения воды твердыми нерастворимыми примесями. Содержание взвешенных веществ измеряется в мг/л. Сухой остаток является одним из основных показателей, по которому судят о пригодности воды для питания котельных агрегатов. Сухой остаток - это остаток после выпаривания лабораторной пробы воды, высушенный при 110 - 120 °С. Он содержит коллоидные и растворенные неорганические и органические примеси в воде. Единица измерения сухого остатка - мг/кг.

Солесодержание воды характеризуется общей концентрацией в воде катионов (Na+; К+; Mg 2 +) и анионов (НСО 3 ; SO 2 4 ; Cl; SiO 2 3). Солесодержание определяет степень минерализации воды в мг/л. Окисляемость характеризует концентрацию находящихся в воде органических примесей. Подсчитывают окисляемость по количеству кислорода (мг/л), необходимого для окисления (при определенных условиях) органических примесей, содержащихся в 1 кг воды. Жесткость воды - весьма важный показатель ее качества. Она характеризуется содержанием в ней ионов кальция и магния (Са 2 +; Mg 2 +). Различают жесткость общую Ж 0 , карбонатную Ж к и некарбонатную Ж нк. Общая жесткость Ж 0 характеризуется суммарной концентрацией ионов Са и Mg, т.е. Ж 0 = ЖCа + ЖMg. Карбонатная жесткость Ж к обусловлена присутствием бикарбонатов Са(НСО 3) 2 и Mg(HCO 3) 2 . Карбонатная жесткость - временная, так как при кипячении бикарбонаты разлагаются с выделением СO 2 и твердых осадков СаСO 3 и Mg(OH) 2 (шламов). Некарбонатная жесткость обусловлена наличием в воде всех остальных солей кальция и магния (CaSO 4 ; MgSO 4 ; СаСl 2; MgCl 2 и др). Некарбонатная жесткость Ж нк иногда называется постоянной, так как простым кипячением разложить указанные соли не удается в силу их свойств. Следовательно, Ж 0 = Ж к + Ж нк.Обычно Ж нк определяют как разность Ж нк = Ж о - Ж к.

Жесткость воды принято измерять в мг-экв/кг или мкг-экв/кг (1 мг-экв = 103 мкг/экв). По величине общей жесткости природную воду делят на три группы: мягкую с Ж 0 < 4 мг-экв/кг; средней жесткости с Ж 0 = 4 ÷ 7 мг-экв/кг и жесткую с Ж 0 > 7 мг-экв/кг. Например, для котлов ДКВр при давлении до 2,4 МПа допускают общую жесткость воды не более 0,02 мг-экв/кг.

Щелочность воды характеризуется содержанием бикарбонатных НСO 3 , карбонатных СО з и гидроксильных ОН - ионов. Величина щелочности измеряется в мг-экв/кг. В природных водах щелочность обусловлена в основном наличием бикарбонатных ионов.

При работе котельного агрегата происходит непрерывное накопление вредных примесей в котловой воде вследствие ее упаривания и притока солей с питательной водой. В паре, выходящем из котла, примесей, как правило, нет (исключение составляют соли кремния в паре при высоких давлениях).

Миллиграмм - эквивалентом называется количество вещества в миллиграммах, численно равное его эквивалентной массе, представляющей собой частное от деления молекулярной массы вещества на его валентность в данном соединении.

Примеси остаются в котловой воде и вызывают нежелательные последствия, если не принять соответствующих мер по предварительной обработке добавочной воды.

Наиболее вредными примесями являются накипеобразователи - соли кальция и магния, характеризующие некарбонатную жесткость, а также коррозионно-активные растворенные газы O 2 и СO 2 . Накипью называется механически прочный слой отложений накипеобразователей на внутренних стенках поверхностей нагрева.

Попадание механических примесей и солей карбонатной жесткости в котельный агрегат нежелательно из - за образования в испарительном контуре так называемых шламов - рыхлых соединений, которые необходимо периодически удалять. Отложение накипи и шлама отрицательно сказывается на работе котлоагрегата. Теплопроводность накипи и шлама незначительна по сравнению с теплопроводностью металлических стенок. Поэтому накипь и шлам увеличивают термическое сопротивление процессу теплопередачи от газов к воде, что приводит в ряде случаев к недопустимому повышению температуры стенок труб и снижению их механической прочности. Увеличение термического сопротивления повышает также расход топлива, что снижает экономичность работы котлоагрегата.

Растворенные в воде газы (О 2 и СО 2) при высоких температурах обладают высокой коррозионной активностью. Коррозия металла стенок труб приводит к уменьшению их толщины и, следовательно, механической прочности.

Щелочность воды несколько снижает интенсивность коррозионных процессов, но с увеличением щелочности наблюдается вспенивание воды в барабанах и возможен унос пены с паром.

Присутствие в воде органических соединений также нежелательно. Высокая окисляемость воды затрудняет ее обработку и удаление минеральных солей, повышает пенообразование. Следовательно, к качеству питательной воды предъявляются определенные требования, которые зависят от типа котельного агрегата (барабанный, прямоточный, водогрейный) и давления вырабатываемого пара.

Существуют два способа обработки воды - докотловая и внутри котловая. Докотловая обработка воды предусматривает комплекс мероприятий, обеспечивающих установленные нормы качества питательной воды. Для поддержания требуемого качества котловой воды в установленных пределах одной докотловой обработки бывает иногда недостаточно (например, для питания барабанных котлоагрегатов высокого и сверхвысокого давлений) из - за несовершенства применяемых методов и аппаратов. В этом случае дополнительно применяется внутри котловая обработка воды, при которой в барабан котлоагрегата вводят химические реагенты (фосфаты). Фосфаты вступают в химические реакции с солями, содержащимися в котловой воде, и образуют малорастворимые рыхлые соединения, которые выводятся из котлоагрегата.

Для прямоточных котлоагрегатов применяют только докотловую обработку добавочной воды. Несмотря на предварительную подготовку питательной воды, для поддержания допустимой по нормам концентрации солей в котловой воде и предотвращения отложений шлама котел продувают, т.е. удаляют из него часть котловой воды. При этом различают периодическую и непрерывную продувку паровых котлов. Периодическая продувка служит преимущественно для удаления шлама из контура котлоагрегата. Непрерывная продувка применяется главным образом для удаления растворенных в воде примесей и получения более чистого пара. Количество продувочной воды, выводимой из котлоагрегата, обычно определяют (или задают) в процентах к производительности агрегата (не более 5 - 6%).

Непрерывная продувка осуществляется из барабана котла (в двухбарабанных котлах - из верхнего) на уровне ввода пароводяной смеси, где солесодержание обычно бывает максимальным. Периодическая продувка производится из нижних коллекторов котла, где скапливается шлам. В двухбарабанных котлах периодическая продувка осуществляется также из нижнего барабана.

Докотловая подготовка воды должна обеспечивать ее осветление (удаление взвешенных частиц), умягчение, снижение щелочности и солесодержания, а также удаление растворенных газов (О 2 и СО 2). Крупные взвешенные вещества удаляют отстаиванием, мелкие - фильтрацией. Для фильтров используют песок, дробленую мраморную крошку, антрацит. Для удаления коллоидных и органических веществ воду перед фильтрованием обрабатывают коагулянтом, т.е. веществом, которое способствует укрупнению взвешенных веществ (соли железа FeSО 4 и FeCl 2 или сернокислый алюминий A 12 (SО 4) 3 . При использовании городской водопроводной воды операции осветления и коагуляции отпадают.

Умягчают воду, т.е. снижают ее жесткость, путем удаления из воды катионов Са 2 + и Mg 2 + еще до поступления ее в котел (докотловая обработка воды). Умягчение осуществляют термическим или химическим методами. Термический метод основан на разложении бикарбонатов кальция и магния при нагревании до 360 - 375 К. Образующиеся при этом труднорастворимые вещества (CaCО 3 , Mg(OH) 2)выпадают в осадок.

В настоящее время основной метод умягчения воды - метод катионного обмена. Сущность его заключается в том, что добавляемую воду пропускают через специальные аппараты - катионитовые фильтры, заполненные материалами, которые участвуют в катионном обмене с солями жесткости. В этих материалах присутствуют катионы натрия (Na+), аммония (NH+), водорода (Н+). Катионы солей жесткости замещают катионы в материале фильтра. Таким образом, катионы, входящие в состав соединений материала фильтра, поступают в обрабатываемую воду, а катионы солей жесткости задерживаются этим материалом. Катионы, перешедшие в воду, уже не являются накипеобразователями.

В качестве катионитовых материалов в производственно - отопительных котельных используют сульфоуголь (каменный и бурый, обработанный концентрированной серной кислотой), который насыщается катионами Na+, NH 4 + или Н+.

Рис. 19.25. Схема водоподготовительной установки.

1 - солерастворитель; 2, 3 - катионитовые фильтры; 4 - теплообменник: 5 - дырчатые листы (тарелки); 6 - деаэратор; 7 - питательный насос; трубопроводы; I - Добавочной сырой воды; II -умягченной воды; III - удаления парогазовой смеси; IV - возвращаемого конденсата; V - пара; VI - питательной воды; VII - слива в дренаж.

В зависимости от качества исходной и питательной воды применяют - различные методы катионирования: натрий-катионирование (Na-катионирование), аммоний - катионирование (NH 4 -катионирование), водород - катионирование (Н-катионирование). Используют также и комбинированные методы, которые осуществляются по трем схемам - последовательной, параллельной, совместной.

В отопительно - производственных котельных широко применяется схема совместного Na - NН 4 -катионирования. С течением времени катионит насыщается катионами кальция и магния и его активность снижается. Для восстановления утраченных обменных свойств катионит подвергают регенерации, обрабатывая его слабым раствором H 2 SO 4 , NaCl или NH 4 C 1 (в зависимости от вида обменного иона). Подробно методы умягчения воды, описание и расчет различных схем изложены в специальной литературе.

Растворенные в воде кислород, двуокись углерода и воздух вызывают коррозию стенок котла, поэтому газы удаляют из воды путем ее дегазации. Из всех известных способов дегазации воды наиболее распространен термический. Этот способ основан на свойстве газов O 2 и СO 2 снижать степень растворимости по мере повышения температуры воды вплоть до кипения, когда при нулевых парциальных давлениях O 2 и СO 2 их растворимость падает до нуля.

На рис. 19.25 показана принципиальная схема водоподготовительной установки (катионитовое умягчение и дегазация).

Добавочная вода из водопровода поступает в Na-катионитовый фильтр, где задерживается большая часть солей, характеризующих жесткость воды. В схеме имеются два катионитовых фильтра. Один фильтр, например 2, находится в работе, а в другом 3 проходит регенерация катионита. Слабый раствор NaCl (6 -10%-ный) подается в фильтр 3 из солерастворителя 1. Умягченная вода подается в деаэратор (дегазатор), где из нее удаляются растворенные газы.

Перед деаэратором воду подогревают горячей водой или паром в теплообменнике, с целью экономии расхода пара на деаэрацию. В верхнюю часть (головку) деаэратора подают очищенную воду и конденсат, возвращаемый в котельную. Проходя через дырчатые листы, вода разбивается на мелкие струи для увеличения площади поверхности контакта с паром, который подается вниз головки. Вода нагревается до кипения, растворенные газы при этом из нее удаляются через патрубок, установленный в верхней части головки. В деаэраторах атмосферного типа поддерживается давление 0,115 - 0,12 МПа, что соответствует температуре насыщения 376 - 377 К.

Подобного типа деаэраторы применяют в котельных низкого и среднего давлений. Они обеспечивают полное удаление кислорода и резко снижают содержание СО 2 в питательной воде. На тепловых станциях с котлами высокого давления используют деаэраторы повышенного давления (0,6 МПа).

Число и производительность деаэратора (по воде) в отопительно - производственных котельных определяют по количеству питательной воды и количеству воды для подпитки тепловых сетей. Запас воды в баках деаэраторов должен быть на 20 - 30 мин при максимальном ее расходе. Запас воды в баках деаэраторов на ТЭЦ должен быть не менее чем на 15 мин работы при максимальном расходе.

В водогрейных котельных применяют деаэраторы вакуумного типа, в которых поддерживается разрежение 0,02 - 0,03 МПа, что соответствует температуре кипения 330 - 340 К. Нагрев воды в них осуществляется от сети горячего водоснабжения.

Нарушение в бесперебойном обеспечении котельного агрегата питательной водой может привести к серьезным авариям. Воду в котельный агрегат подает питательный насос. Каждая котельная установка в соответствии с правилами Госгортехнадзора должна иметь два насоса - основной, или рабочий, и резервный. В качестве основного насоса устанавливают обычно многоступенчатый центробежный насос с электрическим приводом. Резервным служит поршневой насос с приводом от паровой машины. На крупных ТЭЦ в качестве резервных применяют центробежные насосы с приводом от небольшой паровой турбины (турбонасосы).

Подача каждого насоса должна быть не менее 110% номинальной производительности котельной, а напор, создаваемый питательным насосом, должен превышать давление в барабане котла на величину суммарного гидравлического сопротивления питательной линии (включая экономайзер). Напор определяют по формуле

Н = р к.а + Н сопр (19.30)

где р к.а - давление в барабане котлоагрегата; Н сопр - потеря напора в питательной линии (обычно Н сопр = 0,З ÷ 0,4 МПа).

Мощность привода питательного насоса N, кВт, находят по выражению

N = 1,1 D ном Н10 -3 /ȵ н (19.31)

где 1,1 - коэффициент запаса; D ном - номинальная производительность котельной, м 3 /с; Н - полный напор насоса, Па; ȵ н - КПД насоса; для центробежных насосов ȵ н = 0,5 ÷ 0,7 (в зависимости от производительности).

Вспомогательное оборудование котельной установки - топливоподача . Для нормальной и бесперебойной работы котельных установок требуется, чтобы топливо к ним подавалось непрерывно. Процесс подачи топлива складывается из двух основных этапов: 1) подача топлива от места его добычи на склады, расположенные вблизи котельной; 2) подача топлива со складов непосредственно в котельные помещения. Первый этап осуществляется с помощью железнодорожного или водного транспорта или автосамосвалами; на втором этапе для перемещения топлива используют узкоколейные вагонетки вместимостью до 1,5 м 3 , ленточные конвейеры, автопогрузчики, фуникулеры, тельферы и другие устройства, механизирующие этот процесс.

Склады для твердого топлива, как правило, устраивают открытыми и вместимость их рассчитана обычно не более чем на двухмесячный запас. Топливо на этих складах хранят в виде штабелей. Во избежание самовозгорания высота штабеля торфа не должна превышать 1,5 м. Размеры штабелей других видов твердого топлива не нормируют.

Хранилища для жидкого топлива представляют собой стальные (наземные) и бетонные (подземные) резервуары объемом 100 м и более. Расположены они вне котельных. Предпочтительнее использовать бетонные хранилища. Мазут на склады доставляют в железнодорожных цистернах. С помощью пара, подаваемого специальными шлангами, мазут в цистернах подогревают до 340 - 350 К и сливают в лоток, дно которого также обогревается паропроводами. По лотку мазут поступает в хранилища, которые соединяются с насосной станцией, оборудованной фильтрами, и подогревателями мазута. Схема мазутного хозяйства котельной приведена на рис. 19.26.

Газообразное топливо подают в котельные по газопроводам. В зависимости от давления газа трубопроводы могут быть низкого давления (до 0,5 кПа), среднего (от 0,5 кПа до 0,3 МПа) и высокого (более 0,3 МПа). На рис. 19.27 приведена схема газорегулирующего пункта для подачи газа к горелкам котлоагрегатов.

После ввода газопровода в котельную на нем устанавливают отключающую задвижку газовой сети, манометр 2 и отключающую задвижку 1 газовой сети котельной. Затем устанавливают фильтр 3, предохранительный клапан 4 и регулятор давления 5, поддерживающий давление газа перед горелками на требуемом уровне. В исключительных случаях можно отбирать газ помимо регулятора. При непредвиденном повышении давления газа перед горелками сверх установленного значения срабатывает сбросной предохранительный клапан 6 и газ отводится в атмосферу через продувочную свечу 12, установленную над крышей здания котельной. Расход газа учитывает счетчик 7. Газорегулирующий пункт может быть смонтирован как в помещении самой котельной, так и вне ее.

Очистка дымовых газов и удаление золы и шлака. При сгорании твердого топлива образуется много золы.

Рис. 19.26. Схема мазутного хозяйства котельной.

1 - железнодорожный путь для цистерны; 2 - сливной поток; 3 - мазутный бак; 4 - змеевики для подогрева мазута в баке; 5 - дренажный приямок; 6 - паровой насос; 7 - мазутный приямок; 8 - воздушный колпак; 9 - фильтр; 10 - подогреватели мазута; 11 - мазутопровод; 12 - котельные агрегаты; 13 - форсунки; 14 - мазутная магистраль.

При слоевом процессе сжигания основная часть минеральных примесей топлива (60 - 70%) превращается в шлак и проваливается через колосниковые решетки в зольник. В пылеугольных топках большая часть (75 - 85%) золы уносится из котлоагрегатов с дымовыми газами. Выброс сильно запыленных газов через трубу в атмосферу не допускается из - за загрязнения окружающего воздушного бассейна и ухудшения санитарно - гигиенических условий в населенных пунктах, расположенных вблизи котельной. Кроме того, зола вызывает абразивный износ лопаток дымососов. Все эти причины вызывают необходимость улавливать золу из дымовых газов.

В настоящее время в котельных применяют следующие типы золоуловителей : 1) инерционные механические; 2) мокрые; 3) электрофильтры; 4) комбинированные.

Инерционные (механические) золоуловители работают по принципу выделения золовых частиц из газового потока под влиянием сил инерции (при резком изменении направления движения потока, при закручивании газового потока и т. д.).

Рис. 19.27. Принципиальная схема газорегулировочного пункта.

1 - задвижка; 2 - манометр; 3 - фильтр; 4 - предохранительно - запорный клапан (ПЗК); 5 - регулятор давления; 6 - предохранительный сбросной клапан (ПСК); 7 - счетчик; 8 - термометр; 9 - жидкостный манометр; 10 - линия к котлам; 11 - сбросная линия от ПСК; 12 - продувочная свеча; 13 - импульсная линия.

На рис. 19.28 показана схема циклонного золоуловителя. Вследствие тангенциального входа в циклон пылегазовый поток получает вращательное движение, в результате чего частицы золы отбрасываются центробежными силами к стенке корпуса, выпадают из потока и ссыпаются в бункер. Поскольку центробежная сила, с которой отбрасываются частицы золы, при прочих равных условиях будет тем больше, чем меньше радиус циклона, в последнее время предпочитают вместо одного циклона строить батарейные циклоны из нескольких десятков мелких циклонов. Недостаток циклонных золоуловителей - относительно большое (до 40% в однокорпусных и до 20% в батарейных) просачивание мельчайшей пыли в дымовые газы за циклоном. Этот тип золоуловителей используют в отопительно-производственных котельных с расходом дымовых газов до 50 000 м 3 /ч, приведенных к нормальным условиям.

В настоящее время широко применяются золоулавители мокрого типа. Частицы золы из потока выделяются под действием сил инерции. Стенка золоуловителя смачивается пленкой воды, которую вводят в уловитель через различные разбрызгивающие устройства. На рис. 19.29 показана схема мокрого золоуловителя (скруббера) с нижним тангенциальным подводом запыленного газа.

Уловленная зола и загрязненная вода удаляются из нижней части, а очищенные газы - из верхней части корпуса скруббера. Золоуловитель мокрого типа применяют в котельных с расходом дымовых газов более 100 000 м 3 /ч, приведенных к нормальным условиям при условии, что приведенное содержание летучей серы S рл.п ≤ 1%.

Принцип действия электрофильтров заключается в том, что запыленные газы проходят через электрическое поле, образуемое между стальным цилиндром (положительный полюс) и проволокой, проходящей по оси цилиндра (отрицательный полюс). Основная масса частиц золы получает отрицательный заряд и притягивается к стенкам цилиндра, незначительная же часть частиц золы получает положительный заряд и притягивается к проволоке. При периодическом встряхивании электрофильтра электроды освобождаются от золы. Расход электро - энергии невелик (0,1 - 0,15 кВт на 1000 м 3 газа), но высокое напряжение (до 90 000 В) требует особой осторожности при обслуживании электрофильтров. Электрофильтры применяют в котельных с расходом дымовых газов более 70 000 м 3/ ч, отнесенных к нормальным условиям.

Комбинированные золоуловители являются двухступенчатыми, при этом работа каждой ступени основана на различных принципах.

Чаще всего комбинированный золоуловитель состоит из батарейного циклона (первая ступень) и электрофильтра (вторая ступень).

Рис. 19.28. Циклонный золоуловитель. а - схема циклона; б - общий вид батарейного циклона; в - улитка циклона; 1 - циклон; 2 - спираль улитка; 3 - входной коллектор; 4 - крышка; 5 - выхлопная труба; 6 - корпус циклона; 7 - буккер сбора золы и пыли.

Рис. 19.29. Схема центробежного скруббера конструкции ВТИ

1 - корпус; 2 - входной патрубок; 3 - клапан; 4 - коллектор подвода воды; 5 - оросительные сопла.

Эффективность работы золоуловителей оценивают по величине коэффициента очистки (обеспыливания).

ɛ = S у /S д 100%

где S y , S д - содержание золы в газах соответственно после уловителя и до него.

Однокорпусные циклонные уловители имеют ɛ = 40 ÷ 50%, для батарейных циклонов ɛ = 75 ÷ 85%, у мокрых золоуловителей ɛ = 90 ÷ 94%, у электрофильтров ɛ = 90 ÷ 95%; при комбинированной очистке ɛ = 98%.

Процесс золошлакоудаления можно разделить на две основные операции: очистка шлаковых и зольных бункеров и транспортировка золы и шлака на золоотвалы или заводы шлакобетонных изделий.

Существуют три способа удаления очаговых остатков:

  1. механический - с использованием различных механизмов - скреперов, подъемников, шнеков, шлаковыгружателей и т.д.;
  2. пневматический, основанный на способности воздушного потока перемещать сыпучие материалы;
  3. гидравлический, являющийся наиболее совершенным в отношении механизации процесса.

Сущность его состоит в том, что шлак и зола после выгрузки из топок и газоходов смываются в каналы и выносятся по ним к центральному пункту. Оттуда с помощью струи гидроэлеватора под давлением до 2,5 МПа шлак дробится и вместе с золой нагнетается по трубопроводам к отвалам. Способы очистки продуктов сгорания топлива от серосодержащих соединений и от окислов азота в настоящее время находятся еще в стадиях лабораторной и опытно - промышленной проверок. Предельно допустимые суммарные концентрации этих соединений по нормам, принятым в России, составляют 0,085 мг/м 3 .

Котельный завод Энергия-СПБ производит котельно-вспомогательное оборудование котельных установок:

Транспортирование котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

Паровой котел вместе с совокупностью оборудования обеспечивающего его работу, называется котельной установкой. В состав котельной установки, кроме парового котла, входят оборудование топливоприготовления, тягодутьевая установка и устройства золоулавливания газовоздушного тракта котла, питательные насосы и регулирующие устройства питательного тракта, электродвигатели и системы управления и защиты парового котла.

На рис. 2.3 показана котельная установка с барабанным паровым котлом относительно небольшой паропроизводительности при сжигании твердого топлива. Рядом с котлом располагаются система пылеприготовления из поступающего на станцию кускового топлива, тягодутьевая установка, обеспечивающая подачу воздуха в котел и отвод продуктов сгорания после их очистки в дымовую трубу. К обслуживанию котельной установки относят питательные насосы, подающие воду в котел, которые по технологической схеме расположены в турбинном отделении. К котельной установке относится также система дренажей коллекторов и непрерывной продувки из барабана с оборудованием для использования теплоты этих потоков (сепараторы, теплообменники).

Рис. 2.3. Общая технологическая схема парогенераторной установки, работающей на твердом топливе

2 – бункер разгрузочного устройства; 3 – дробильный блок; 4 – бункер парогенератора для сырого топлива; 5 – мельница для размола топлива; 6 – эксгаустер; 7 – барабан парогенератора; 8 – пароперегреватель; 9 – водяной экономайзер; 10 – воздухоподогреватель; 11 – вентилятор; 12 – деаэратор; 13 – питательный насос; 14 – золоуловитель; 15 дымосос; 16 – дымовая труба; 17 – ленточный транспортер; 19 – багерная насосная система золоудаления

Котел для сжигания твердого топлива имеет в нижней части топки устройство для удаления шлаков, образующихся в зоне ядра горящего факела. Для охлаждения шлаков выполняют сближение двух противоположных экранов топки, охлаждаемых изнутри на этом участке водой. Это устройство называется холодной воронкой. При сжигании газа и мазута этой проблемы нет и нижняя часть топки имеет горизонтальный под, выложенный огнеупорным материалом.

Обмуровка стен топочной камеры и газоходов крепится к специальному каркасу котла, который принимает на себя также вес металла всех поверхностей нагрева, коллекторов и барабана.

Газовоздушный тракт - единая система воздушных коробов и газохо­дов, обеспечивающая подачу воздуха через воздухоподогреватель и горелки

в топку, движение образующихся продуктов сгорания (газов) по газоходам котла и удаление охлажденных газов в дымовую трубу. Движение воздуха и газов в зависимости от мощности и размеров котла может быть органи­зовано за счет естественной или принудительной тяги.

В котлах малой паропроизводительности без организации подогрева воздуха для горения при, относительно короткой длине газоходов (рис. 2.4а) возникает небольшое сопротивление при движении газов, которое преодолевается за счет естественной тяги дымовой трубы. Естественная тяга или самотяга Н с, Па, определяется разностью давлений гидростатических столбов атмосферного воздуха снаружи и нагретой газовой среды внутри трубы:

H c = h тр (ρ в -ρ г)g, (2.4)

где h тр - высота дымовой трубы, м; ρ в, ρ г - плотность холодного воздуха (при 20-30°С) и газов (при температуре на выходе из котла), кг/м 3 ; g- ускорение под действием сил земного притяжения, м/с 2 . В среднем для трубы высотой 100 м значение Н с = 350 - 400 Па или 35-40 кгс/м 2 (35-40 мм в. ст.).

В котлах большой мощности увеличивается количество трубных поверхностей в газовом потоке, появляется подогрев воздуха за счет тепла газов, газоходы значительно удлиняются и имеют как подъемные, так и опускные участки, где необходимо преодолевать собственную самотягу газов, направленную вверх. Дополнительно необходимо иметь запас напора для регулирования расходов. В этом случае сопротивление газовоздушного тракта становится очень большим и не может быть преодолено за счет тяги дымовой трубы, поэтому организуется принудительное движение воздуха и газов.

Совместная работа воздушного и газового трактов котла может быть организована двумя способами. По первому способу (рис. 2.4,б) газовоздушный тракт котла включает в себя дутьевые вентиляторы для подачи атмосферного воздуха под давлением 2,5-4-5 кПа (250 - 500 мм в. cт.) через воздухоподогреватели к горелкам и части горячего воздуха в углеразмольные мельницы. Сопротивление газового тракта котла, а также аппаратов золоулавливания и газоходов до дымовой трубы преодолевается дымососами, имеющими напор 2,0-3,5 кПа. В: этом случае весь воздушный тракт на участке «вентилятор-топка» находится под давлением, выше атмосферного. Продукты сгорания удаляют из котла дымососами, в связи с чем топка и все газоходы находятся под разрежением. Такую схему тяги и дутья называют уравновешенной. Контрольной точкой, обеспечивающей согласование работы дутьевых вентиляторов и дымососов, является давление газов на выходе из топочной камеры. Здесь устанавливается и автоматически поддерживается небольшое разрежение (давление ниже атмосферного), составляющее 30-50 Па (3-5 мм вод. ст.). Дутьевой вентилятор подает столько воздуха, сколько нужно для полного сжигания топлива, а регулирующие устройства дымососов изменяют производительность так, чтобы в верху топки постоянно сохранять указанное небольшое разрежение. Ввиду работы всего газового тракта при давлении ниже атмосферного через неплотности его ограждений происходят присосы окружающего воздуха, что заметно увеличивает объем перекачиваемых дымососами газов. В среднем доля присосов воздуха составляет около 20-30% объема газов, образующихся в топке при горении топлива.

Транспорт воздуха до топки и продуктов сгорания до выхода в атмосферу можно также обеспечить специальными высоконапорными дутьевыми вентиляторами без применения дымососов. В этом случае топка и газоходы будут находиться под некоторым избыточным давлением - наддувом. Весь газовый тракт котла при наддуве находится под избыточным давлением в сравнении с атмосферным. В этом случае, чтобы исключить проникновение в котельное отделение токсичных газов, необходимо обеспечить полную газоплотность всех стен газоходов котла, что достигается переходом на новую технологию производства настенных экранов и заметно удорожает котел.

Рис. 2.4. Схемы газовоздущных трактов котлов: а - с естественной тягой; б - с уравновешенней тягой; 1 - воздухозаборник; 2 - короб горячего воздуха; 3 - присосы холодного воздуха; 4 - контроль разрежения на выходе из топки; 5 - топливозабрасыватель; Б - барабан-сепаратор; ПП - пароперегреватель; ЭК - экономайзер; ВП - воздухоподогреватель; ДВ - дутьевой вентилятор; ДС - дымосос; ДТ - дымовая труба; ПС - система пылеприготовления; Г - горелка; Т - топочная камера (топка).

Вместе с тем переход на газоплотность тракта исключает присосы воздуха и уменьшает объем удаляемых из котла газов. Напор, который создает высоконапорный дутьевой вентилятор, меньше, чем сумма напоров дутьевого вентилятора и дымососа в уравновешенной схеме. Это приводит к экономии энергии на привод тягодутьевых машин. К тому же высоконапорный дутьевой вентилятор перекачивает объем холодного воздуха, а дымососы - достаточно «горячих» газов с увеличенным дельным объемом, что дополнительно снижает затраты энергии на перекачку.

В длительной эксплуатации газоплотного котла в разных его местах за счет термических напряжений со временем происходит разгерметизация тракта, исключение которой требует больших, постоянных затрат. Поэтому в эксплуатации используют газоплотные по конструкции поверхности котла

Модульные котельные установки (транспортабельные и блочные котельные установки) представляют собой один или несколько блок-модулей (в зависимости от необходимой тепловой мощности) с установленным внутренним технологическим оборудованием и оборудованием для подключения к инженерным сетям. Такие котельные поставляются Заказчику в полной заводской готовности.

Схема и характеристики котельной установки зависят от нескольких факторов: необходимой тепловой мощности, используемого топлива (природный газ, сжиженные газ, попутный нефтяной газ, мазут, дизельное топливо, отработанное масло, уголь, кокс, многотопливные котельные), назначения котельной установки (отопительные или промышленные котельные). Тип топлива является самым главным критерием для дальнейшего подбора оборудования, а именно котлов и горелок. В зависимости от топлива можно выделить , а так же дизельные, нефтяные, мазутные, твердотопливные котельные.

Основные требования к проектированию и строительству котельных с давлением пара не более 3,9 МПа (40 кгс/см 2) и с температурой воды не более 200°С собраны в своде правил .

В соответствии с вышеуказанным нормативным документом все котельные установки делятся на две категории:

  • категория I - котельные установки, которые являются единственным источником тепловой энергии или которые обеспечивают тепловой энергией потребителей без индивидуальных резервных источников тепла
  • категория II - котельные установки, не относящиеся к первой категории

Работа котельных установок

Рассмотрим работу котельной на примере водогрейной котельной установки. В котлах происходит нагрев теплоносителя (в большинстве случаев, воды) для подачи ее потребителю. Установленные насосы способствуют постоянной циркуляции теплоносителя (подача ее потребителю и возврат ее обратно). Вода поступает по трубам в теплоисточник (радиатор, теплые полы, отопительные котлы). В котельной обязательно должна быть предусмотрена регулировка продолжительности работы и температуры теплоносителя. Линия подачи воды потребителя называется прямой линией (или подающей).

Поступив в радиаторы, вода остывает и возвращается обратно. Это является обратной линией котельной.

Оборудование котельной установки

Оборудование для блочно-модульной котельной подбирается и компонуется по Индивидуальному заказу на основе заполненного Опросного листа на ТКУ , в котором указываются основные требования и параметры основного оборудования. Блочно-модульная котельная состоит из:

  • Здание котельной
  • Котельное оборудование (котлы)
  • Горелки
  • Газовое оборудование
  • Насосное оборудование
  • Системы автоматизации, связи и сигнализации, контроля и пожарной безопасности
  • Системы водоочистки и водоподготовки
  • Мембранный расширительный бак
  • Газоходы и дымовые трубы

Блок-модуль котельной

Здание транспортабельной котельной представляет собой блок-модуль (контейнерный модуль). Это одноэтажная каркасная конструкция из негорючих материалов для обеспечения пожарной безопасности и высокой огнестойкости. Необходимая мощность котельной определяет количество модулей каркасного типа, их габаритные размеры (см. ГОСТ 23838-89 "Здания предприятий. Параметры"). В случае возможности установки всего оборудования в один блок-бокс, завод-изготовитель котельной может порекомендовать предусмотреть одно или несколько алюминиевых окон или стальных дверных проемов.

Здание модульной котельной является сварной каркасной конструкцией с основанием в виде платформы, за счет которой увеличивается прочность конструкции и способность ее сопротивляться ветровым и снеговым нагрузкам. Стальные швеллеры служат основой стоек, балок и прогонов каркаса. Прокатные швеллеры или уголки используются для балок пола. В качестве ограждающих конструкций блок-модуль обшиваются сэндвич-панелями из листов рифленой стали. Крышу котельной традиционно делают одно- или двускатную.

Устройство теплоизоляции здания котельной (утеплитель, подшивка) позволяет эксплуатировать котельную при низки температурах. Также все металлоконструкции должны пройти антикоррозионную обработку.

При проектировании здания котельной следует учитывать требования к взрывопожарной безопасности и огнестойкости сооружения в соответствии с СП 12.13130.2009 "Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности (с Изменением N 1)".

Котельное оборудование

Котлы являются одним из важных элементов котельных установок. Именно в них происходит нагрев теплоносителя или получение пара.

В соответствии с "Правилами устройства и безопасной эксплуатации паровых и водогрейных котлов" различают водогрейные, паровые и пароводогрейные котлы. Теплоноситель для котельных (вода или пар) образовывается за счет получаемой тепловой энергии от сжигания топлива (в случае газовых, твердотопливных и жидкотопливных котлов) или за счет преобразования электроэнергии в тепловую (в случае электрических котлов). Корпус котла изготавливается из чугуна или из стали в зависимости от используемого вида топлива. Например, в случае использования твердого топлива на стальных стенках котла происходит отложение серы, из-за чего срок службы котла сокращается. Выходом из этого может стать использование чугунных котлов, но они тоже обладают одним недостатком: являются слишком большими и громоздкими.

При выборе вида и количество котлов производятся технико-экономические расчеты, для которых учитываются следующие факторы:

  • производительность котлов и котельной в целом
  • обеспечение стабильности в работе котлов при минимальной нагрузке в теплый период года
  • количество потребителей
  • расстояние доставки теплоносителя до конечного потребителя
  • требования к КПД котла
  • вид топлива и его химические характеристики (твердое топливо, газ, электричество)
  • автоматизация работы котельной и ее степень
  • габаритные размеры котла
  • прочность котла
  • возможность очистки, промывки и ремонта котла

При выборе количества котлов следует помнить пп. 4.8. и 4.14. , в соответствии с которыми минимальное количество котлов определяется категорией котельной: в котельных первой категории устанавливается минимально два котла, в котельных второй категории - один котел.

Горелки

Одним из важных рабочих элементов котельной является горелка (кроме электрических котлов). Функциями любых горелок (газовых, дизельных) являются подготовка, смешение топлива и воздуха и сжигание полученной горючей смеси в камере сгорания котла, за счет чего происходит нагрев теплоносителя в котле.

Выбор конструкции и типа горелки осуществляется на основании используемого топлива (жидкого топлива или газа), а также анализа требований к мощности и производительности котла, размерам камеры сгорания котла, диапазону и типу регулирования горелки. Так, газовые горелки бывают одноступенчатыми, двуступенчатыми (с возможностью работать в двух режимах), плавно-двухступенчатые (работают в диапазоне заданных режимов) и модулируемые горелки (работают в диапазоне мощностей от 10 до 100%).

Газовое оборудование для котельных

К газовому оборудованию котельных относятся:

  • запорная и предохранительная арматура
  • контрольно-измерительное оборудование ( , датчики, манометры, термометры, напорометры)

Требования к использованию газового оборудования достаточно строгие из-за повышенной горючести газа. Их (требования) Вы можете посмотреть в СП 89.13330.2012 "Котельные установки. Актуализированная редакция СНиП II-35-76". Согласно им, установки ГРУ устанавливаются в здании котельной, а пункты ГРП на площадке котельной. Также, если каждый котел имеет тепловую мощность более 30 МВт, рекомендуется предусматривать две линии редуцирования (т.е. дублирующая нитка редуцирования включается только в случае выхода из строя основной линии редуцирования). Если тепловая мощность котлов в котельной менее 30 МВт, возможна установка одной линии редуцирования (кроме котельных I категории).

Количество трубопроводов подачи газа также регламентируется Сводами Правил СП 89.13330.2012: в котельных I категории мощностью до 30 МВт, которые работают только на газе, газ от ГРУ или ГРП может поступать от двух трубопроводов; в котельных II категории - от одного.

Регуляторы давления газа необходимы для регулирования давления поставляемого газа вне зависимости от расхода: обычно регуляторы давления понижают давление газа.

Фильтры толстой и тонкой очистки газа необходимы для фильтрации газа от примесей, твердых частиц и вкраплений, которые могут засорить трубопроводы, снизить производительность котлов и уменьшить срок службы оборудования.

Запорная и предохранительная арматура устанавливается на газовой линии котельной также для нормальной и безопасной эксплуатации газового оборудования. Основными элементами такой арматуры являются запорные и термозапорные клапаны, контрольные клапаны, обратные клапаны, .

Насосное оборудование котельных

Насосы необходимы для равномерной подачи теплоносителя и его отпуска, транспортировки теплоносителя по трубам к тепловому источнику и циркуляции теплоносителя. В зависимости от специфики котельной и используемого котельного оборудования выбирается тип и конструкция насоса (см. СП 89.13330.2012). Конструктивно насосы изготавливаются и поставляются с паровым или электроприводом. По типу насосы бывают сетевые (для циркуляции теплоносителя в системе), питательные (для подачи воды к котлам), циркуляционные (для обеспечения заданного напора воды у потребителя), антиконденсационные и подпиточные (для восполнения системы водой из внешних источников) насосы. Количество насосов рассчитывается исходя из производительности котельной. При этом в некоторых случаях обязательна установка резервного насоса.

Теплообменная система котельной

Система ГВС котельной состоит из теплообменников, обычно пластинчатых, и водоподогревателей (паровых, водяных, пароводяных). Теплообменное оборудование необходимо для подогрева нагреваемой воды от горячей среды.

Количество водоподогревателей рассчитывается для каждой системы котельной (системы вентиляции, системы отопления) и в зависимости от необходимых параметров отпускаемой воды/пара.

Автоматизация котельных установок, системы связи, сигнализации, контроля и пожарной безопасности

Особенностью является полностью автоматизированная работа котельной без постоянного присутствия персонала, но под постоянной диспетчеризацией и контролем посредством вывода информации о параметрах работы котельной на дистанционном пульте управления.

В случае аварийных ситуаций (прекращение подачи топлива к горелкам, понижение/повышение давления воды/пара/масла, повышение/понижение уровня воды, исчезновение электрического напряжения, повышение/понижение температуры воды/масла на выходе и т.п.) информация о них поступает на пульт управления котельной. Для оповещения о поломке оборудования должна быть предусмотрена система сигнализации (звукая, световая). При этом автоматически происходит отключение вышедшего из строя оборудования и ввод в работу резервного оборудования. Регулирование параметров работы котельной должно осуществляться автоматически, если эти параметры выходят за рамки заданных.

Случаи сигнализации, оповещения и регулирования приведены в СП 89.13330.2012.

Водоподготовка котельных установок, водоочистка

Система водоподготовки в котельных необходима для очистки воды перед поступлением в котлы или тепловые сети от механических примесей и растворенных загрязнителей, деминералиции и умягчения. Это предотвращает образование накипи на котельном оборудовании, образование коррозии и вспенивание котловой воды и унос солей с паром. Для подготовки воды используется несколько методов: механическая фильтрация и нанофильтрация, обратный осмос, известкование, ультрафильтрация, дехлорирование, натрий-катионирование и др.

Вода и пар, используемая в котельной, должна отвечать требованиям:

  • ГОСТа 2761-84 "Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические, технические требования и правила выбора"
  • СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения"
  • ПБ 10-574-03 "Правила устройства и безопасной эксплуатации паровых и водогрейных котлов"
  • ГОСТ 20995-75 "Котлы паровые стационарные давлением до 3,9 МПа. Показатели качества питательной воды и пара"

Среди оборудования, используемого в системах водоподготовки, можно назвать: фильтры, установки обезжелезивания, установка умягчения, вихревые реакторы для реагентного умягчения и т.п.

Выбор водоподготовительных установок должен соответствовать требованиям СП 31.13330.2012 "Водоснабжение. Наружные сети и сооружения. Актуализированная редакция СНиП 2.04.02-84".

Расширительный мембранный бак

Расширительные баки необходимы в составе котельных, так как они предотвращают повышение давления воды (при подогреве воды происходит ее расширение и, соответственно, увеличение ее объема), возможность гидроудара и компенсируют ее объем. Баки также удаляют образовавшийся воздух в результате нагрева теплоносителя. Для выполнения этих функций в котельной устанавливают расширительные баки для разных систем: расширительный бак отопления и расширительный бак горячего водоснабжения.

Конструктивно мембранные баки для отопления и водоснабжения схожи. Они представляют собой вертикальный или горизонтальный цилиндрический или прямоугольный бак, с установленной внутри эластичной мембраной. Эта мембрана разделяет расширительный бак на воздушный и жидкостный отсеки. Принцип работы мембранного бака заключается в том, что излишки воды в системе при ее нагревании попадают в бак. Эту воду можно использовать для водоснабжения и водоподготовки, подавая ее в систему под нужным давлением.

Материал расширительных баков для системы отопления должен быть более устойчивым к высоким температурам. Расширительные баки для систем водоснабжения должны быть сделаны из эластичного материала, чтобы выдерживать большие перепады давления.

Дымовые трубы и газоходы

Дымовые трубы и газоходы относятся к системе дымоудаления (газоотвода) котельных установок. В случае затрудненного естественного рассеивания отработанных газов и дыма (в случае отсутствия естественной тяги) строятся дымовые трубы разных конструкций. Газоходы же тянутся от котлов и крепятся перпендикулярно к дымовым трубам.

Дымовые трубы бывают следующих конструкций:

  • дымовая труба на ферме
  • дымовая труба на растяжках
  • дымовая труба на мачте
  • фасадная дымовая труба
  • самонесущая дымовая труба

Кроме того, в конструкцию одной дымовой трубы может входить несколько вертикальных газоходов.

Материал, высота, диаметр и метод крепления трубы определяются исходя из мощности котельной и на основании аэродинамических подсчетов газового тракта, скорости газа, требований к устойчивости конструкции (в соответствии с требованиями СП 43.13330.2012 "Сооружения промышленных предприятий. Актуализированная редакция СНиП 2.09.03-85").

На котельных установках также устанавливается вспомогательное оборудование для надежной эксплуатации котлов и всей системы в целом. Комплект вспомогательного оборудования зависит от вида используемого топлива, от мощности и от технико-экономических требований Заказчика. Вспомогательное оборудование включает в себя:

  • деаэраторы (вакуумные, атмосферного давления, химические, термические)
  • водоподогреватель (бойлер)
  • баки-аккумуляторы и др.

Специалисты нашей компании выполняют весь комплекс услуг по проектированию, аэродинамическому расчету, изготовлению и вводу в эксплуатацию котельных установок, крышных котельных и дымовых труб. Вся поставляемая продукция имеет все необходимые Разрешения и Сертификаты соответствия.

Заказывая котельные установки у ГК Газовик, Вы можете быть уверены в бесперебойном обеспечении тепловой энергией потребителей.

Вспомогательное оборудование котельных установок представляет собой:

  • электрические фильтры;
  • воздухоподогреватели;
  • дымовые трубы.

Данные элементы являются основными деталями среди вспомогательного оборудования. Их установка происходит над котлом. Основное и вспомогательное оборудование котельной должно быть спроектировано за такими техническими схемами, которые позволят автоматизировать управление.

Установка котельной системы и безопасность

Во время постройки собственного дома, каждый тщательно планирует интерьер, старается провести качественно все работы и ремонт, и, конечно, установку котла. Оборудование котельной установки – важнейший этап для достижения полного комфорта в собственном жилье. К установке данной системы необходимо относиться ответственно, чтобы в будущем не оплачивать штрафы и ничего не переделывать.

Работы должны проводиться под строгим контролем специалистом, чтобы избежать и пожары, и взрывы.

Во избежание ремонта котельного оборудования и серьезных последствий, предусмотрен серьезный список услуг с установки и организации. Все начинается со сбора документов и заканчивается запуском отопительной системы для использования. Чтобы работа котла и всей системы проходила бесперебойно, надежно и экономически функционировала, все услуги по использованию установки и пусконаладочных работ котельного оборудования должен проводить высококвалифицированный специалист. Он должен иметь лицензию и разрешение на проведение подобных работ.

  1. Предварительно проводится обвязка все отопительной системы.
  2. Проверка на правильность работы всей системы, во избежание ремонта котельного оборудования и аварий.
  3. Проведение финальной настройки оборудования для котельной.
  4. Получение инструктажа от специалистов.

Обслуживание системы

Если установка, наладка котельного оборудования и котла была исполнена по всем нормам и правилам, во время использования все же могут возникнуть ситуации, которые потребуют дополнительного ремонта вспомогательных оборудований котельной установки. Самой частой причиной таких поломок становиться некачественная вода, которая не отвечает нормативам оборудования для котла. Наладка котла, ремонт, связанные с ним работы, достаточно расходное дело.

Рис. 1

Чтобы уменьшить расходы на ремонт котельных и котельного оборудования в будущем, строительство отопительной системы должны совершать компании, которые имеют широкий список услуг:

  • Послегарантийное обслуживание построенного объекта.
  • Реконструкция.
  • Необходимый ремонт и наладка.

Главная задача собственника, проведение своевременного технического обслуживания помещения под котельную.

Основные (рис 1) и вспомогательные элементы системы отопления

Котельная – это комплекс приборов, который полностью готов к преобразованию химической энергии топлива на тепловую горячую энергию, либо пара необходимых параметров.

Производитель котельного оборудования предлагает следующие основные составляющие элементы:

  • водяной экономайзер;
  • воздухоподогреватель;
  • каркас с лестницами и полками обслуживания;
  • оправа;
  • тепловая изоляция;
  • обшивка;
  • арматура;
  • гарнитура;
  • газоходы.

Оборудование для котельной (нуждается в наладке) имеет дополнительные установки любого производителя:

  • вентиляторы;
  • дымососы;
  • питательные, подпиточные и циркуляционные насосы;
  • водоподготовительные установки;
  • системы передачи топлива;
  • установка для улавливания золы;
  • вакуумный золоудалитель.

Производители котельного оборудования разработали основную установки в мазутном хозяйстве во время сгорания газа газорегуляторный пункт или газорегуляторную установку.

Рис. 2

Наладка всей системы отопления, пусконаладочный процесс – залог бесперебойной работы и комфорта каждого.

  1. Паровой котел установки. Это прибор, который состоит из топки, испарительных поверхностей. Основная его работа заключается в испарении пара, который был использован за пределами данного устройства. Не правильная наладка процесса провоцирует под давлением, которое выше атмосферного счета теплоты и выделяется во время сгорания топлива, выходить пару за пределы котла.
  2. Водонагревательный котел. Этот теплообменный прибор, в котором основным источником тепловой энергии является вода.
  3. Топочное устройство. Работа данного агрегата в сжигание топлива, превращая его энергию в теплоту.
  4. Обмуровка котла. Данная система, предусмотрена производителями, чтобы выполнять работу по уменьшению тепловых потерь, обеспечения газовой плотности.
  5. Казан. Это металлическая конструкция. Основная ее работа заключается в удерживании котла и отдельных нагрузок, обеспечении нужного взаимного размещения элементов котла.
  6. Паровой перегреватель. Данный прибор повышения температуры пара выше температуры насыщения давления в котле. Производитель предусмотрел работу данной системы змеевиков, где полная наладка котельного оборудования подразумевает соединение на входе насыщенного пара с барабаном котла, а на выходе – с камерой перегретого пара.
  7. Водяной экономайзер. Суть работы данного прибора заключается в его нагреве продуктами сгорания топлива, что, в свою очередь, частично подогревает или полного испаряет воду в котле.
  8. Воздухоподогреватель. Основная его работа в подогреве воздуха продуктами сгорания топлива, прежде чем горючее попадет в топку котла.

Потребность ремонта в гарантийный срок

Детали для котла могут понадобиться и в тот момент, пока агрегат находится еще на гарантии.

Ремонт котельного оборудования возможен:

  • работа по установке котла неверно проведена;
  • использование агрегата не правильное;
  • техническое обслуживание проводится не вовремя;
  • перепады напряжения (можно приобрести стабилизатор, который устранит эту проблему);
  • не качественный теплоноситель (на входном трубопроводе можно провести установку как фильтр для котла).
Рис. 3

Чтобы избежать ремонта котельного оборудования, все нюансы стоит обдумать наперед, нежели в срочном порядке решать проблему.

Поломка? Без паники

Конечно, если ремонт котельного оборудования понадобится перед отопительным сезоном, то это полбеды, а если в разгар холодов – главное не паниковать. Но и относиться к проблеме нужно с серьезностью, ведь может сбиться наладка котла и всей системы. Если поломка установки не серьезная, ремонт можно произвести самостоятельно. Но если есть сомнения в причинах и последствиях – ремонт стоит доверить профессионалу.

Успешная работа установки зависит не только от производителя, но и от выбора модели еще в магазине. От выбора зависит, справится ли агрегат с поставленными задачами и объемом работы – весь пусконаладочный процесс. Лучше, если компания, которая совершила продажу, имела сервисный центр где-то недалеко. Чтобы в любой момент могла помочь с пусконаладочным процессом, проводила осмотр и ремонт котла (рис 2).

Конечно, производитель котельного оборудования несет ответственность за свой товар, но хозяин должен проводить эксплуатацию по инструкции и правил, чтобы не совершались сбои в наладке установки и растраты на ремонт. Статистика компаний по ремонту котлов и систем отопления утверждают, что почти 70% причин поломки из-за не правильного использования и работы приборов, нарушения требований и норм. Поэтому, ремонт котельного оборудования случается, в основном, по вине не производителя, а потребителя.

Рис. 4

Наладка устройства и ремонт

Если человек не разбирается в ремонтных вопросах, то ему будет сложно понять этот процесс с котлами и приборами к нему.

В списке можно ознакомиться с наиболее часто встречающимися проблемами:

  • Электронная плата. Этот прибор производитель наделил ответственностью за все процессы. Она регулирует прибор, включает и выключает его, контролирует, влияет на пусконаладочный процесс. Небольшой сбой в работе приведет к взрыву. Во избежание поломок, такой элемент лучше монтировать как стабилизатор напряжения.
  • (рис 3). Если продажа котельного оборудования осуществилась с браком от производителя, не один пусконаладочный процесс не поможет. Проблема с работой установок возникает в первые месяцы эксплуатации. Для устранения недостатка придется полностью провести замену теплообменника. Но намного чаще встречается проблема забивания прохода различными отложениями и солями. Поток теплоносителя начинает уменьшаться, и однажды котел закипает. Во избежание ремонта и пусконаладочного процесса, необходимо уделять внимание качеству воды. А так же, во время продажи агрегата, обращать внимание на его качество, нет ли брака от производителя.
  • (рис 4). Пусконаладочный процесс установки подразумевает беспрерывную работу данного насоса. Но если он отключиться, произойдет закипание котла. Агрегат отключиться благодаря предохранительному термостату (есть в продаже). Но проблема не исчезнет и ремонт обеспечен. Виной в поломке является теплоноситель – жидкость для котлов отопления. Насос может остановить по двум причинам: появление накипи; увеличение мусора в середине корпуса. Чтобы избежать данной неприятности, в продаже есть специальный фильтр, который устанавливается на входном патрубке.
  • Газовая автоматика. Ремонт данного элемента котла практически не возможен. Обычно, данный компонент полностью меняют. Во избежание очередной наладки котла, данную поломку лучше предупредить, чем решать. В продаже встречается топливо низкого качества. Поэтому, чтобы предупредить поломку газовой автоматики стоит покупать горючее высокого качества и использовать чистую воду для теплоносителя.

Сегодня существует множество торговых точек, которые предлагают комплектующие для котлов. Стоит заметить, что известные брендовые, популярных фирм детали рекомендуются профессионалами всегда. Они качественные, имеют не сложный пусконаладочный процесс, наладка котла происходит достаточно быстро.