Отопительный график 95 70. Температурный график подачи теплоносителя в систему отопления

Строительство стен

Каждая система отопления имеет определенные характеристики. К ним относят мощность, теплоотдачу и температурный режим работы. Они определяют эффективность работы, напрямую влияя на комфорт проживания в доме. Как правильно выбрать температурный график и режим отопления, его расчет?

Составление температурного графика

Температурный график работы системы отопления вычисляется по нескольким параметрам. От выбранного режима зависит не только степень нагрева помещений, но и расход теплоносителя. Это же влияет на текущие затраты по обслуживанию отопления.

Составленный график температурного режима отопления зависит от нескольких параметров. Главным из них является уровень нагрева воды в магистралях. Он же, в свою очередь, состоит из следующих характеристик:

  • Температура в подающем и обратном трубопроводе. Замеры выполняются в соответствующих патрубках котла;
  • Характеристики степени нагрева воздуха в помещении и на улице.

Корректный расчет температурного графика отопления начинается с вычисления разницы между температурой горячей воды в прямом и подающем патрубке. Эта величина имеет следующее обозначение:

∆T=Tвх-Tоб

Где Tвх – температура воды в подающей магистрали, Tоб – степень нагрева воды в обратной трубе.

Для увеличения теплоотдачи системы отопления необходимо повысить первое значение. Для уменьшения расхода теплоносителя ∆t должна быть минимальной. Именно это и является основной сложностью, так как температурный график котельной отопления напрямую зависит от внешних факторов – тепловых потерь в здании, воздуха на улице.

Для оптимизации мощности отопления необходимо сделать теплоизоляцию наружных стен дома. Этим уменьшатся тепловые потери и расход энергоносителя.

Расчет температурного режима

Для определения оптимального температурного режима необходимо учитывать характеристики компонентов отопления – радиаторов и батарей. В частности – удельную мощность (Вт/см²). Это напрямую скажется на тепловой отдаче нагретой воды воздуху в помещение.

Также необходимо сделать ряд предварительных расчетов. При этом учитываются характеристики дома и отопительных приборов:

  • Коэффициент сопротивления теплопередачи наружных стен и оконных конструкций. Оно должно быть не менее 3, 35 м²*С/Вт. Зависит от климатических особенностей региона;
  • Поверхностная мощность радиаторов.

Температурный график системы отопления имеет прямую зависимость от этих параметров. Для вычисления тепловых потерь дома необходимо знать толщину наружных стен и материал постройки. Расчет поверхностной мощности батарей выполняется по следующей формуле:

Руд=Р/Fакт

Где Р – максимальная мощность, Вт, Fакт – площадь радиатора, см².

Согласно полученным данным составляется температурный режим для отопления и график теплоотдачи в зависимости от температуры на улице.

Для своевременного изменения параметров отопления устанавливают температурный регулятор отопления. Это устройство подключается к термометрам на улице и в помещении. В зависимости от текущих показателей происходит регулировка работы котла или объема притока теплоноситель в радиаторы.

Недельный программатор является оптимальным температурным регулятором отопления. С его помощью можно максимально автоматизировать работу всей системы.

Централизованное отопление

Для централизованного теплоснабжения температурный режим системы отопления зависит от характеристик системы. В настоящее время есть несколько видов параметров теплоносителя, поступающего к потребителям:

  • 150°С/70°С . Для нормализации температуры воды с помощью элеваторного узла происходит ее смешивание с охлажденным потоком. В данном случае можно составить индивидуальный температурный график отопительной котельной для конкретного дома;
  • 90°С/70°С . Свойственен для небольших частных отопительных систем, рассчитанных для теплоснабжения нескольких многоквартирных домов. В этом случае можно не устанавливать смесительный узел.

В обязанность коммунальных служб входит расчет температурного отопительного графика и контроль его параметров. При этом степень нагрева воздуха в жилых помещениях должна быть на уровне +22°С. Для нежилых этот показатель немного ниже – +16°С.

Для централизованной системы составление корректного температурного графика котельной отопления требуется для обеспечения оптимальной комфортной температуры в квартирах. Основная проблема заключается в отсутствии обратной связи – невозможно регулировать параметры теплоносителя в зависимости от степени нагрева воздуха в каждой квартире. Именно поэтому составляется температурный график отопительной системы.

Копию графика отопления можно потребовать в Управляющей Компании. С его помощью можно контролировать качество поставляемых услуг.

Автономное отопление

Делать аналогичные расчеты для автономных систем теплоснабжения частного дома зачастую не нужно. Если в схеме предусмотрены комнатные и уличные температурные датчики – информация о них будет поступать в блок управления котлом.

Поэтому для уменьшения расхода энергоносителя чаще всего выбирают низкотемпературный режим работы отопления. Он характеризуется относительно небольшим нагревом воды (до +70°С) и высокой степенью ее циркуляции. Это необходимо для равномерного распределения тепла по всем отопительным приборам.

Для реализации подобного температурного режима системы отопления потребуется выполнение следующих условий:

  • Минимальные тепловые потери в доме. Однако при этом не нужно забывать о нормальном воздухообмене – обустройство вентиляции обязательно;
  • Высокая тепловая отдача радиаторов;
  • Установка автоматических регуляторов температуры в отоплении.

Если же есть необходимость выполнить корректный расчет работы системы- рекомендуется воспользоваться специальными программными комплексами. Для самостоятельного вычисления необходимо учесть слишком много факторов. Но с их помощью можно составить примерные температурные графики режимов отопления.


Однако следует учитывать, что точный расчет температурного графика теплоснабжения делается для каждой системы индивидуально. В таблицах приведены рекомендованные значения степени нагрева теплоносителя в подающей и обратной трубе в зависимости от температуры на улице. При выполнении вычислений не учитывались характеристики здания, климатические особенности региона. Но даже несмотря на это их можно использовать в качестве основы для создания температурного графика отопительной системы.

Максимальная нагрузка системы не должна сказываться на качестве работы котла. Поэтому рекомендуется приобретать его с запасом мощности на 15-20%.

Даже у самого точного температурного графика котельной отопления в процессе работы будут наблюдаться отклонения расчетных и фактических данных. Это связано с особенностями эксплуатации системы. Какие факторы могут влиять на текущий температурный режим теплоснабжения?

  • Загрязнение трубопроводов и радиаторов. Во избежание этого следует проводить периодическую очистку системы отопления;
  • Неправильная работа регулирующей и запорной арматуры. Обязательно выполняется проверка работоспособности всех компонентов;
  • Нарушение режима функционирования котла – резкие скачки температуры как следствие – давления.

Поддержание оптимального температурного режима системы возможно только при правильном выборе ее компонентов. Для этого следует учитывать их эксплуатационные и технические свойства.

Регулировку нагрева батареи можно выполнять с помощью термостата, с принципом работы которого можно ознакомиться в видеоматериале:

Важнейшей задачей при проектировании и эксплуатации систем теплоснабжения является разработка эффективного гидравлического режима, обеспечивающего надежную работу тепловых сетей.

Под надежной работой подразумевается:

1) обеспечение требуемых напоров перед абонентами ();

2) исключение вскипания теплоносителя в подающей магистрали;

3) исключение опорожнения систем отопления в зданиях, а значит последующего завоздушивания при повторном пуске;

4) исключение опасных превышений давления у потребителей, вызывающих возможность порыва труб и отопительной арматуры.

Под гидравлическим режимом тепловой сети понимают взаимную связь между давлениями (напорами) и расходами теплоносителя в различных точках сети в данный момент времени.

Гидравлический режим тепловой сети изучают с помощью построения графика давлений (пьезометрического графика).

График строится после проведения гидравлического расчета трубопроводов. Он позволяет наглядно ориентироваться в гидравлическом режиме работы тепловых сетей при различном режиме их работы, с учетом влияния рельефа местности, высоты зданий, потерь давления в тепловых сетях. По этому графику можно легко определить давление и располагаемый напор в любой точке сети и абонентской системе, подобрать соответствующее насосное оборудование насосных станций и схему автоматического регулирования гидравлического режима работы ИТП.

Рассмотрим пьезометрический график для тепловой сети, располо­женной на местности со спокойным рельефом (рис. 7.1). Плоскость с нулевой отметкой совмещена с отметкой расположения теплоподготовительной установки. Профиль основной магистрали 1 -2-3 -III совме­щен с вертикальной плоскостью, в которой вычерчен пьезометрический график. В точке 2 к магистрали присоединено ответвление 2 -I . Это от­ветвление имеет свой профиль в плоскости, перпендикулярной основной магистрали. Для возможности изображения профиля ответвления 2 -I на пьезометрическом графике повернем его на 90° против часовой стрел­ки вокруг точки 2 и совместим c плоскостью профиля основной маги­страли. После совмещения плоскостей профиль ответвления займет на графике положение, отображаемое линией 2 - . Аналогично строим профиль и для ответвления 3 - .



Рассмотрим работу двухтрубной системы теплоснабжения, принци­пиальная схема которой показана на рис. 7.1,в . Из теплоподготовительной установки Т высокотемпературная вода с поступает в по­дающий теплопровод в точке П1 с полным напором в подающем коллек­торе источника теплоснабжения (здесь - на­чальный полный напор после сетевых насосов (точка K ); - потери напора сетевой воды в теплоподготовительной установке). Так как гео­дезическая отметка установки сетевых насосов , полные напоры в начале сети равны пьезометрическим напорам и соответствуют избыточ­ным давлениям в коллекторах источника теплоснабжения. Горячая вода по подающей магистрали 1-2-3-III и ответвлениям 2-I и 3-II по­ступает в местные системы потребителей тепла I , II , III . Полные напоры в подающей магистрали и ответвлениях изображены графиками напоров П1-ПIII , П2-ПI , П3-ПII . Охлажденная вода по обратным трубопро­водам направляется к источнику теплоснабжения. Графики полных дав­лений в обратных теплопроводах изображены линиями OIII-О1 , OII- О3, ОI-О1.

Разность напоров в подающей и обратной линиях для любой точ­ки сети называется располагаемым напором . Так как подающий и обрат­ный трубопроводы в любой точке имеют одну и ту же геодезическую от­метку, располагаемый напор равен разности полных или пьезометриче­ских напоров:

У абонентов располагаемые напоры равны: ;

; . Полный напор в конце обратной линии перед сетевым насосом на обратном коллекторе источника тепло­снабжения равен . Следовательно, располагаемый

напор в коллек­торах теплоподготовительной установки

Сетевой насос повышает давление воды, поступающей из обратной линии, и направляет ее в теплоподготовительную установку, где она на­гревается до . Насос развивает напор .

Рис. 7.1. Пьезометрический график (а), однолинейная схема трубопроводов (б) и схе­ма двухтрубной тепловой сети (в)

I -III - абоненты; 1, 2, 3 - узлы; П - подающая линия; О - обратная линия; Н - напоры; Т -теплоподготовительная установка; СИ - сетевой насос; РД - регулятор давления; Д - точка от­бора импульса для РД; ПН - подпиточный насос; Б - бак подпиточной воды; ДК - дренажныйклапан.

Потери напора в подающей и обратной линиях равны разности пол­ных напоров в начале и конце трубопровода. Для подающей магистрали они равны , а для обратной .

Описанный гидродинамический режим наблюдается при работе се­тевого насоса. Положение пьезометрической линии обратного трубопро­вода в точке О1 поддерживается постоянным в результате работы подпиточного насоса ПН и регулятора давления РД . Напор, развиваемый подпиточным насосом при гидродинамическом режиме , дросселируется клапаном РД таким образом, чтобы в точке отбора импульса давления Д из байпасной линии сетевого насоса поддерживался напор , рав­ный полному напору, развиваемому подпиточным насосом.

На рис. 7.2 показаны график напоров в линии подпитки и в байпас­ной линии, а также принципиальная схема подпиточного устройства.

Рис. 7.2. График напоров в линии подпитки 1 -2 и в байпасной линии сетевого насоса 2 -3 (а) и схема подпиточного устройства (б):

Н - пьезометрические напоры; - поте­ри напора в дроссельных органах регуля­тора давления РД и в задвижках А и В; СН, ПН - сетевой и подпиточный насосы; ДК - дренажный клапан; Б - бак подпиточной воды

Перед подпиточным насосом полный напор условно принимаем равным нулю. Подпиточный насос ПН развивает напор . Этот напор будет в трубопроводе до регулятора давления РД. Потерями напора на трение на участках 1 -2 и 2 -3 пренебрегаем ввиду их малости. В байпасной линии теплоноситель движется от точки 3 к точке 2. В задвижках А и В срабатывается весь напор, развиваемый сетевым насосом. Степень за­крытия этих задвижек регулируют таким образом, чтобы в задвижке А был сработан напор и полный напор после нее был равен .

В задвижке В срабатывается напор , причем (здесь - напор после РД). Регулятор давления под­держивает постоянное давление в точке Д между задвижками А и В. При этом в точке 2 будет поддерживаться напор , а на клапане РД будет срабатываться напор .

При увеличении утечки теплоносителя из сети давление в точке Д начинает снижаться, клапан РД приоткрывается, увеличивается подпит­ка тепловой сети и давление восстанавливается. При сокращении утечки давление в точке Д начинает повышаться и клапан РД прикрывается. Если при закрытом клапане РД давление будет продолжать расти, на­пример в результате прироста объема воды при повышении ее темпера­туры, в работу включится дренажный клапан ДК, поддерживающий по­стоянное давление «до себя» в точке Д, и сбросит избыток воды в дре­наж. Так работает подпиточное устройство при гидродинамическом ре­жиме. При остановке сетевых насосов прекращается циркуляция тепло­носителя в сети и во всей системе напор падает вплоть до . Регуля­тор давления РД открывается, а подпиточный насос ПН поддерживает во всей системе постоянный напор .

Таким образом, при втором характерном гидравлическом режиме - статическом - во всех точках системы теплоснабжения устанавливается полный напор, развиваемый подпиточным насосом. В точке Д как при гидродинамическом, так и при статическом режимах поддерживается постоянный напор .Такая точка называется нейтральной.

Ввиду большого гидростатического давления, создаваемого столбом воды, и высокой температуры транспортируемой воды возникают жест­кие требования к допустимому диапазону давлений как в подающем, так и в обратном трубопроводах. Эти требования накладывают ограни­чения на возможное расположение пьезометрических линий как при статическом, так и при гидродинамическом режимах.

Для исключения влияния местных систем на режим давления в сети будем считать, что они присоединены по независимой схеме, при которой гидравлические режимы тепловой сети и местных систем автономны. В таких условиях к режиму давлений в сети предъявляются излагаемые ниже требования.

При работе тепловой сети и при разработке графика пьезометрических напоров должны быть соблюдены следующие условия (как при динамическом, так и при статическом режимах), которые перечисляются в порядке очередности их проверки при построении графика.

1. Пьезометрический напор в обратном трубопроводе сети должен быть выше статического уровня подсоединенных систем (высоты зданий Н зд ) не менее чем на 5 м (запас), иначе давление в обратном трубопроводе Н обр будет меньше статического давления здания Н зд и уровень воды в зданиях установится на высоте напора обратного пьезометра, а над ним возникнет вакуум (оголение системы), который вызовет подсос воздуха в систему. На графике это условие выразится тем, что линия обратного пьезометра должна пройти на 5 м выше здания:

Н обр Н зд + 5 м ; Н ст Н зд + 5 м .

2. В любой точке обратной магистрали пьезометрический напор должен быть не менее 5 м , чтобы не было вакуума и подсоса воздуха в сеть (5 м – запас). На графике это условие выражается тем, что пьезометрическая линия обратной магистрали и линия статического напора в любой точке сети должны идти не менее чем на 5м выше уровня земли:

Н обр Н з + 5 м ; Н ст Н з + 5 м.

3. Напор на всасе сетевых насосов (напор подпитки Н о ) должен быть не менее 5 м , чтобы обеспечить залив насосов водой и отсутствие кавитации:

Н о 5 м.

4. Давление воды в системе отопления должно быть меньше максимально допустимого, которое могут выдержать отопительные приборы (6 кгс/см 2 ). На графике это условие выражается тем, что на вводах в здания пьезометрические напоры в обратной магистрали и статический уровень сети не должны быть выше Н доп = 55 м (с запасом 5 м ):

Н обр - Н з 55 м ; Н ст - Н з 55 м .

5. В подающем трубопроводе до элеватора, где температура воды выше , должно поддерживаться давление не менее давления кипения воды при температуре теплоносителя – принимается с запасом; (для статического уровня это не обязательно):

Н s =20 м при и Н s =40 м при .

На графике это условие выразится тем, что линия напоров в подающем трубопроводе должна быть соответственно на величину Н s выше наивысшейточки перегретой воды в системе отопления (для жилых зданий это будет уровень земли, а для промышленных зданий –высшаяточка перегретой воды в цехах):

Н под Н s + 5 м .

6. Статический уровень местных систем (уровень верха зданий) не должен создавать в системах других зданий давление больше максимального допустимого для них, иначе при остановке сетевых насосов произойдет раздавливание приборов этих систем за счет давления воды высоко расположенных зданий. На графике это условие выразится тем, что уровни высоко расположенных зданий не должны превышать больше чем на 55 м уровни земли у других зданий.

7. Давление в любой точке системы не должно превышать максимально допустимое из условий прочности оборудования, деталей и арматуры. Обычно принимают максимальное избыточное давление Р доп =16…22 кгс/см 2 . Это означает, что и пьезометрический напор в любой точке подающего трубопровода (от уровня земли) должен быть не менее Н доп – 5 м (с запасом5 м ):

Н под – Н з Н доп – 5 м .

8. Располагаемый напор (разность пьезометрических напоров в подающем и обратном трубопроводах) на вводах в здания должен быть не менее потери напора в системе абонента:

Н р = Н под – Н обр Н зд .

Таким образом, пьезометрический график позволяет обеспечить эффективный гидравлический режим тепловой сети и подобрать насосное оборудование.

Контрольные вопросы

1. Изложите основные задачи выбора режима давлений водяных тепловых сетей из условия надежности работы системы теплоснабжения.

2. Что такое гидродинамический и статический режимы работы тепловой сети? Обоснуйте условия определения положения статического уровня.

3. Представьте методику построения пьезометрического графика.

4. Изложите требования к определению положения на пьезометрическом графике линий давления в подающей и обратной магистралях тепловой сети.

5. На основе каких условий на пьезометрическом графике наносятся наносятся уровни допустимых максимальных и минимальных пьезометрических напоров для подающей и обратной линий системы теплоснабжения?

6. Что такое «нейтральная» точка» на пьезометрическом графике и при помощи какого устройства на ТЭЦ или котельной регулируется ее положение?

7. Как определяется рабочий напор сетевых и подпиточных насосов?

Температурный график представляет собой зависимость степени нагрева воды в системе от температуры холодного наружного воздуха. После необходимых вычислений результат представляют в виде двух чисел. Первое означает температуру воды на входе в систему теплоснабжения, а вторая на выходе.

Например, запись 90-70ᵒС означает, что при заданных климатических условиях для отопления определенного здания понадобится, чтобы на входе в трубы теплоноситель имел температуру 90ᵒС, а на выходе 70ᵒС.

Все значения представляются для температуры воздуха снаружи по наиболее холодной пятидневке. Данная расчетная температура принимается по СП «Тепловая защита зданий». Внутренняя температура для жилых помещений по нормам принимается 20ᵒС. График обеспечит правильную подачу теплоносителя в трубы отопления. Это позволит избежать переохлаждения помещений и нерационального расхода ресурсов.

Необходимость выполнения построений и расчетов

Температурный график необходимо разрабатывать для каждого населенного пункта. Он позволяет обеспечиться наиболее грамотную работу системы отопления, а именно:

  1. Привести в соответствие тепловые потери во время подачи горячей воды в дома со среднесуточной температурой наружного воздуха.
  2. Предотвратить недостаточный нагрев помещений.
  3. Обязать тепловые станции поставлять потребителям услуги, соответствующие технологическим условиям.

Такие вычисления необходимы, как для крупных отопительных станций, так и для котельных в небольших населенных пунктах. В этом случае результат расчетов и построений будет называться график котельной.

Способы регулирования температуры в системе отопления

По завершении расчетов необходимо добиться вычисленной степени нагрева теплоносителя. Достигнуть ее можно несколькими способами:

  • количественным;
  • качественным;
  • временным.

В первом случае изменяют расход воды, поступающей в отопительную сеть, во втором регулируют степень нагрева теплоносителя. Временный вариант предполагает дискретную подачу горячей жидкости в тепловую сеть.

Для центральной системы теплоснабжения наиболее характерен качественный, способ при этом объем воды, поступающий в отопительный контур, остается неизменным.

Виды графиков

В зависимости от назначения тепловой сети способы выполнения отличаются. Первый вариант - нормальный график отопления. Он представляет собой построения для сетей, работающих только на отопление помещений и регулируемых централизованно.

Повышенный график рассчитывается для тепловых сетей, обеспечивающих отопление и снабжение горячей водой. Он строится для закрытых систем и показывает суммарную нагрузку на систему подачи горячей воды.

Скорректированный график также предназначен для сетей, работающих и на отопление, и на нагрев. Здесь учитываются тепловые потери при прохождении теплоносителя по трубам до потребителя.


Составление температурного графика

Построенная прямая линия зависит от следующих значений:

  • нормируемая температура воздуха в помещении;
  • температура наружного воздуха;
  • степень нагрева теплоносителя при поступлении в систему отопления;
  • степень нагрева теплоносителя на выходе из сетей здания;
  • степень теплоотдачи отопительных приборов;
  • теплопроводность наружных стен и общие тепловые потери здания.

Чтобы выполнить грамотный расчет, необходимо вычислить разницу между температурами воды в прямой и обратной трубе Δt. Чем выше значение в прямой трубе, тем лучше теплоотдача системы отопления и выше температура внутри помещений.

Чтобы рационально и экономно расходовать теплоноситель, необходимо добиться минимально возможного значения Δt. Это можно обеспечить, например, проведением работ по дополнительному утеплению наружных конструкций дома (стен, покрытий, перекрытий над холодным подвалом или техническим подпольем).

Расчет режима отопления

В первую очередь необходимо получить все исходные данные. Нормативные значения температур наружного и внутреннего воздуха принимаются по СП «Тепловая защита зданий». Для нахождения мощности отопительных приборов и тепловых потерь потребуется воспользоваться следующими формулами.

Тепловые потери здания

Исходными данными в этом случае станут:

  • толщина наружных стен;
  • теплопроводность материала, из которого изготовлены ограждающие конструкции (в большинстве случаев указывается производителем, обозначается буквой λ);
  • площадь поверхности наружной стены;
  • климатический район строительства.

В первую очередь находят фактическое сопротивление стены теплопередаче. В упрощенном варианте можно его найти как частное толщины стены и ее теплопроводности. Если наружная конструкция состоит из нескольких слоев, по отдельности находят сопротивление каждого из них и складывают полученные значения.

Тепловые потери стен рассчитываются по формуле:

Q = F*(1/R 0)*(t внутр. воздуха -t наружн. воздуха)

Здесь Q – это тепловые потери в килокалориях, а F – площадь поверхности наружных стен. Для более точного значения необходимо учесть площадь остекления и его коэффициент теплопередачи.


Расчет поверхностной мощности батарей

Удельная (поверхностная) мощность вычисляется как частное максимальной мощности прибора в Вт и площади поверхности теплоотдачи. Формула выглядит следующим образом:

Р уд = Р max /F акт

Расчет температуры теплоносителя

На основе полученных значений подбирается температурный режим отопления и строится прямая теплоотдачи. По одной оси наносятся значения степени нагрева подаваемой в систему отопления воды, а по другой температура наружного воздуха. Все величины принимаются в градусах Цельсия. Результаты расчета сводятся в таблицу, в которой указаны узловые точки трубопровода.

Проводить вычисления по методике достаточно сложно. Для выполнения грамотного расчета лучше всего воспользоваться специальными программами.

Для каждого здания такой расчет выполняется в индивидуальном порядке управляющей компанией. Для примерного определения воды на входе в систему можно воспользоваться существующими таблицами.

  1. Для крупных поставщиков тепловой энергии используют параметры теплоносителя 150-70ᵒС, 130-70ᵒС, 115-70ᵒС.
  2. Для небольших систем на несколько многоквартирных домов применяются параметры 90-70ᵒС (до 10 этажей), 105-70ᵒС (свыше 10 этажей). Может также быть принят график 80-60ᵒС.
  3. При обустройстве автономной системы отопления для индивидуального дома достаточно контроля над степенью нагрева с помощью датчиков, график можно не строить.

Выполненные мероприятия позволяют определять параметры теплоносителя в системе в определенный момент времени. Анализируя совпадение параметров с графиком можно проверять эффективность отопительной системы. В таблице температурного графика указывается также степень нагрузки на систему отопления.

Подача тепла в помещение связана с простейшим температурным графиком. Температурные значения воды, которая подается из котельной, не изменяются в помещении. Они имеют стандартные значения и находятся в пределах от +70ºС до +95ºС. Такой температурный график системы отопления является самым востребованным.

Регулировка температуры воздуха в доме

Не везде на территории страны есть централизованное отопление, поэтому многие жители устанавливают независимые системы. Их температурный график отличается от первого варианта. В этом случае температурные показатели значительно снижены. Они зависят от эффективности современных котлов отопления.

Если температура доходит до +35ºС, то котел будет работать на максимальной мощности. Это зависит от нагревательного элемента, где тепловая энергия может забираться уходящими газами. Если температурные значения будут больше +70 ºС, то производительность котла падает. В таком случае в его технической характеристике указывается КПД 100%.

Температурный график и его расчет

Как будет выглядеть график, зависит от температуры наружного воздуха. Чем больше отрицательное значение наружной температуры, тем больше теплопотери. Многие не знают, откуда брать данный показатель. Эта температура прописана в нормативных документах. За расчетное значение принимают температуры самой холодной пятидневки, причем берется самое низкое значение за последние 50 лет.

График зависимости наружной и внутренней температуры

На графике представлена зависимость наружной и внутренней температуры. Допустим, температура наружного воздуха равна -17ºС. Проведя вверх линию до пересечения с t2, получим точку, характеризующую температуру воды в системе отопления.

Благодаря температурному графику, можно подготовить систему отопления даже под самые суровые условия. Также он сокращает материальные затраты на установку отопительной системы. Если рассматривать этот фактор с точки зрения массового строительства, экономия является существенной.

внутри помещения зависит от температуры теплоносителя , а также других факторов :

  • Температура наружного воздуха. Чем она меньше, тем отрицательнее это сказывается на отоплении;
  • Ветер. При возникновении сильного ветра теплопотери увеличиваются;
  • Температура внутри помещения зависит от теплоизоляции конструктивных элементов здания.

За последние 5 лет принципы строительства изменились. Строители увеличивают стоимость дома с помощью теплоизоляции элементов. Как правило, это касается подвалов, крыш, фундаментов. Эти дорогостоящие мероприятия впоследствии позволяют жильцам экономить на системе отопления.

Температурный график отопления

На графике показывается зависимость температуры наружного и внутреннего воздуха. Чем ниже температура наружного воздуха, тем выше будет температура теплоносителя в системе.

Температурный график разрабатывается для каждого города во время отопительного периода. В малых населенных пунктах составляется температурный график котельной, которая обеспечивает необходимое количество теплоносителя потребителю.

Изменять температурный график можно несколькими способами :

  • количественным – характеризуется изменением расхода теплоносителя, подаваемого в систему отопления;
  • качественным – состоит в регулировании температуры теплоносителя перед подачей в помещения;
  • временным – дискретный метод подачи воды в систему.

Температурный график представляет собой график отопительных трубопроводов, который распределяет отопительную нагрузку и регулируется с помощью централизованных систем. Существует также повышенный график, он создается для замкнутой системы отопления, то есть для обеспечения подачи горячего теплоносителя в подключаемые объекты. При применении открытой системы необходимо проводить корректировку температурного графика, так как теплоноситель расходуется не только на отопление, но и бытовое водопотребление.

Расчет температурного графика производится по простому методу. Ч тобы его построить, необходимы исходные температурные данные воздуха :

  • наружного;
  • в помещении;
  • в подающем и обратном трубопроводе;
  • на выходе из здания.

Кроме того, следует знать номинальную тепловую нагрузку. Все остальные коэффициенты нормируются справочной документацией. Расчет системы производится для любого температурного графика, в зависимости от назначения помещения. Например, для крупных промышленных и гражданских объектов составляется график 150/70, 130/70, 115/70. Для жилых домов этот показатель составляет 105/70 и 95/70. Первый показатель показывает температуру на подачи, а второй - на обратке. Результаты расчетов заносятся в специальную таблицу, где показывается температура в определенных точках отопительной системы, в зависимости от наружной температуры воздуха.

Основным фактором при расчете температурного графика является наружная температура воздуха. Расчетная таблица должна быть составлена так, чтобы максимальные значения температуры теплоносителя в системе отопления (график 95/70) обеспечивали обогрев помещения. Температуры в помещении предусмотрены нормативными документами.

отопительных приборов

Температура отопительных приборов

Основной показатель - температура отопительных приборов. Идеальным температурным графиком для отопления является 90/70ºС. Добиться такого показателя невозможно, так как температура внутри помещения должна быть не одинаковой. Она определяется в зависимости от назначения помещения.

В соответствии со стандартами, температура в угловой жилой комнате составляет +20ºС, в остальных – +18ºС; в ванной – +25ºС. Если наружная температура воздуха равна -30ºС, то показатели увеличиваются на 2ºС.

Кроме того , существует нормы для других типов помещений :

  • в помещениях, где находятся дети – +18ºС до +23ºС;
  • детские учебные учреждения – +21ºС;
  • в культурных заведениях с массовым посещением – +16ºС до +21ºС.

Такая область температурных значений составлена для всех видов помещений. Она зависит от выполняемых движений внутри комнаты: чем их больше, тем меньше температура воздуха. Например, в спортивных учреждениях люди много двигаются, поэтому температура составляет всего +18ºС.

Температура воздуха в помещении

Существуют определенные факторы , от которых зависит температура отопительных приборов :

  • Температура наружного воздуха;
  • Вид системы отопления и перепад температур: для однотрубной системы – +105ºС, а для однотрубной – +95ºС. Соответственно перепады в для первой области составляют 105/70ºС, а для второй – 95/70ºС;
  • Направление подачи теплоносителя в отопительные приборы. При верхней подаче разница должна быть 2 ºС, при нижней – 3ºС;
  • Вид отопительных приборов: теплоотдачи отличаются, поэтому будет отличаться температурный график.

В первую очередь, температура теплоносителя зависит от наружного воздуха. Например, на улице температура равна 0ºС. При этом температурный режим в радиаторах должен быть равен на подаче 40-45ºС, а на обратке – 38ºС. При температуре воздуха ниже нуля, например, -20ºС, эти показатели изменяются. В данном случае температура подачи становится равна 77/55ºС. Если показатель температуры доходит до -40ºС, то показатели становятся стандартными, то есть на подаче +95/105ºС, а на обратке – +70ºС.

Дополнительные параметры

Чтобы определенная температура теплоносителя дошла до потребителя, необходимо следить за состоянием наружного воздуха. Например, если она составляет -40ºС, котельная должна подавать горячую воду с показателем в +130ºС. По ходу теплоноситель теряет тепло, но все равно температура остается большой при поступлении в квартиры. Оптимальное значение +95ºС. Для этого в подвалах монтируют элеваторный узел, служащий для смешивания горячей воды из котельной и теплоносителя с обратного трубопровода.

За теплотрассу отвечает несколько учреждений. За подачу горячего теплоносителя в систему отопления следит котельная, а за состоянием трубопроводов – городские тепловые сети. За элеваторный элемент несет ответственность ЖЕК. Поэтому чтобы решить проблему подачи теплоносителя в новый дом, необходимо обращаться в разные конторы.

Монтаж отопительных приборов производят в соответствии с нормативными документами. Если собственник сам производит замену батареи, то он отвечает за функционирование отопительной системы и изменение температурного режима.

Способы регулировки

Демонтаж элеваторного узла

Если за параметры теплоносителя, выходящего из теплого пункта, отвечает котельная, то за температуру внутри помещения должны отвечать работники ЖЕКа. Многие жильцы жалуются на холод в квартирах. Это происходит из-за отклонения температурного графика. В редких случаях бывает, что температура повышается на определенное значение.

Регулировку параметров отопления можно произвести тремя способами:

  • Рассверливание сопла.

Если температура теплоносителя на подаче и обратке существенно занижена, то необходимо увеличить диаметр сопла элеватора. Таким образом, через него будет проходить больше жидкости.

Как это осуществить? Для начала перекрывается запорная арматура (домовые задвижки и краны на элеваторном узле). Далее снимается элеватор и сопло. Затем его рассверливают на 0,5-2 мм, в зависимости от того, насколько необходимо повысить температуру теплоносителя. После этих процедур, элеватор монтируется на прежнее место и запускается в эксплуатацию.

Чтобы обеспечить достаточную герметичность фланцевого соединения, необходимо заменить паронитовые прокладки на резиновые.

  • Глушение подсоса.

При сильных холодах, когда возникает проблема замерзания отопительной системы в квартире, сопло можно полностью снять. В этом случае подсос может стать перемычкой. Для этого необходимо его заглушить с помощью стального блина, толщиной в 1 мм. Такой процесс выполняется только в критических ситуациях, так как температура в трубопроводах и отопительных приборах будет достигать 130ºС.

  • Регулировка перепада.

В середине отопительного периода может возникнуть значительное повышение температуры. Поэтому необходимо регулировать ее с помощью специальной задвижки на элеваторе. Для этого подачу горячего теплоносителя переключают на подающий трубопровод. На обратку монтируется манометр. Регулировка происходит путем закрытия задвижки на подающем трубопроводе. Далее задвижка приоткрывается, при этом следует контролировать давление с помощью манометра. Если ее просто открыть, то возникнет просадка щечек. То есть повышение перепада давления происходит на обратном трубопроводе. Каждый день показатель увеличивается на 0,2 атмосферу, причем температуру в системе отопления необходимо постоянно контролировать.

Каждая управляющая компания стремиться к достижению экономичных затрат на обогрев многоквартирного дома. К тому же пытаются прийти жильцы частных домов. Этого можно достичь, если составить температурный график, в котором будет отражена зависимость выдаваемого носителями тепла от погодных условий на улице. Правильное использование этих данных позволяют оптимально распределять горячую воду и отопление потребителям.

Что такое температурный график

В теплоносителе не должна поддерживаться один и тот же режим работы, ведь за пределами квартиры температура меняется. Именно ею нужно руководствоваться и в зависимости от нее менять температуру воды в объектах отопления. Зависимость температуры теплоносителя от наружной температуры воздуха составляется специалистами-технологами. Для его составления учитываются значения, имеющиеся у теплоносителя и у температуры воздуха снаружи.

Во время проектирования любого здания должны учитываться размер поставленного в нем обеспечивающего тепло оборудования, размеры самого здания и сечения, имеющиеся у труб. В высотном здании жильцы не могут самостоятельно увеличить или уменьшить температуру, так как она подается из котельной. Наладка режима работы выполняется всегда с учетом температурного графика теплоносителя. Учитывается и сама температурная схема - если обратная труба дает воду с температурой выше 70°C, то расход теплоносителя будет избыточным, если же значительно ниже - имеет место дефицит.

Важно! Температурный график составляется таким образом, чтобы при любой температуре воздуха на улице в квартирах поддерживался стабильный оптимальный уровень отопления на уровне 22 °C. Благодаря ему даже самые суровые морозы становятся не страшны, потому что системы отопления окажутся к ним готовы. Если на улице -15 °C, то достаточно отследить значение показателя, чтобы узнать, какой будет температура воды в системе отопления в этот момент. Чем уличная погода будет суровее, тем горячее должна оказаться вода внутри системы.

Но уровень отопления, поддерживающийся внутри помещений, зависит не только от теплоносителя:

  • Температура на улице;
  • Наличие и сила ветра - сильные его порывы значительно отражаются на теплопотерях;
  • Теплоизоляция - качественно обработанные конструктивные части здания помогают сохранить тепло в здании. Это выполняется не только во время строительства дома, но и отдельно по желанию собственников.

Таблица температуры теплоносителя от температуры наружного воздуха

Для того, чтобы рассчитать оптимальный температурный режим, нужно учесть и характеристики, имеющиеся у отопительных приборов - батарей и радиаторов. Важнее всего необходимо посчитать их удельную мощность, она будет выражаться в Вт/см 2 . Это будет сказываться самым прямым образом на отдаче тепла от нагретой воды к нагреваемому воздуху в помещении. Важно учесть их поверхностную мощность и коэффициент сопротивления, имеющийся у оконных проемов и наружных стен.

После того, как будут учтены все значения, нужно рассчитать разницу между температурой в двух трубах - на вводе в дом и на выходе из него. Чем выше будет значение в трубе входа, тем выше - в обратной. Соответственно, отопление внутри помещения будет расти под этими значениями.

Погода на улице, С на вводе в здание, С Обратная труба, С
+10 30 25
+5 44 37
0 57 46
-5 70 54
-10 83 62
-15 95 70

Грамотное использование теплоносителя подразумевает попытки жителей дома уменьшить разницу температур между трубой входа и выхода. Это может быть строительная работа по утеплению стены снаружи или теплоизоляция внешних теплоснабжающих труб, утепление перекрытий над холодным гаражом или подвалом, утепление внутренней части дома или несколько выполняемых одновременно работ.

Отопление в радиаторе также должна соответствовать нормам. В центральных отопительных системах обычно варьируется от 70 С до 90 С в зависимости от температуры воздуха на улице. Важно учитывать, что в угловых комнатах не может быть менее 20 С, хотя в иных комнатах квартиры допускается снижение до 18 С. Если на улице температура снижается до -30 С, то в комнатах отопление должно подняться на 2 С. В остальных комнатах тоже должна вырасти температура при условии, что в комнатах разного назначения она может быть разной. Если в помещении находится ребенок, то она может колебаться от 18 С до 23 С. В кладовых и коридорах отопление может варьироваться от 12 С до 18 С.

Важно отметить! Учитывается среднесуточная температура - если ночью держится температура примерно -15 С, а днем - -5 С, то считаться будет по значению -10 С. Если в ночное время держалось около -5 С, а в дневное время она поднялась до +5 С, то отопление учитывается по значению 0 С.

График подачи горячей воды в квартиру

Для того, чтобы доставить потребителю оптимальное ГВС, ТЭЦ должны отправлять ее максимально горячей. Теплотрассы всегда настолько длинные, что их протяженность можно измерять в километрах, а протяженность по квартирам измеряется и вовсе в тысячах квадратных метров. Какой бы ни была теплоизоляция труб, тепло теряется по пути к пользователю. Поэтому необходимо нагреть воду максимально.


Однако, вода не может быть нагрета больше, чем до точки кипения. Поэтому был найден выход - увеличить давление.

Важно знать! При его повышении смещается в сторону увеличения температура кипения воды. Как следствие - до потребителя она доходит действительно горячей. При увеличении давления не страдают стояки, смесители и краны, а все квартиры до 16 этажа можно обеспечить ГВС без дополнительных насосов. В теплотрассе обычно вода содержит 7-8 атмосфер, верхняя граница обычно имеет 150 с запасом.

Выглядит это так:

Температура кипения Давление
100 1
110 1,5
119 2
127 2,5
132 3
142 4
151 5
158 6
164 7
169 8

Подача горячей воды в зимнее время года должна быть непрерывной. Исключения из этого правила составляют аварии на теплоснабжения. Отключить горячее водоснабжение могут только в летний период для профилактических работ. Такие работы проводятся как в системах теплоснабжения закрытого типа, так и в системах открытого типа.