Названия больших цифр. Какое число самое большое

Фундамент

В названиях арабских чисел каждая цифра принадлежит своему разряду, а каждые три цифры образуют класс. Таким образом, последняя цифра в числе обозначает количество единиц в нем и называется, соответственно, разрядом единиц. Следующая, вторая с конца, цифра обозначает десятки (разряд десятков), и третья с конца цифра указывает на количество сотен в числе – разряд сотен. Дальше разряды точно также по очереди повторяются в каждом классе, обозначая уже единицы, десятки и сотни в классах тысяч, миллионов и так далее. Если число небольшое и в нем нет цифры десятков или сотен, принято принимать их за ноль. Классы группируют цифры в числах по три, нередко в вычислительных приборах или записях между классами ставится точка или пробел, чтобы визуально разделить их. Это сделано для упрощения чтения больших чисел. Каждый класс имеет свое название: первые три цифры – это класс единиц, далее идет класс тысяч, затем миллионов, миллиардов (или биллионов) и так далее.

Поскольку мы пользуемся десятичной системой исчисления, то основная единица измерения количества – это десяток, или 10 1 . Соответственно с увеличением количества цифр в числе, увеличивается и количество десятков 10 2 ,10 3 ,10 4 и т.д. Зная количество десятков можно легко определить класс и разряд числа, например, 10 16 – это десятки квадриллионов, а 3×10 16 – это три десятка квадриллионов. Разложение чисел на десятичные компоненты происходит следующий образом – каждая цифра выводится в отдельное слагаемое, умножаясь на требуемый коэффициент 10 n , где n – положение цифры по счет слева направо.
Например: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Также степень числа 10 используется и в написании десятичных дробей : 10 (-1) – это 0,1 или одна десятая. Аналогичным образом с предыдущим пунктом, можно разложить и десятичное число, n в таком случае будет обозначать положение цифры от запятой справа налево, например: 0,347629= 3×10 (-1) +4×10 (-2) +7×10 (-3) +6×10 (-4) +2×10 (-5) +9×10 (-6)

Названия десятичных чисел. Десятичные числа читаются по последнему разряду цифр после запятой, например 0,325 – триста двадцать пять тысячных, где тысячные – это разряд последней цифры 5 .

Таблица названий больших чисел, разрядов и классов

1-й класс единицы 1-й разряд единицы
2-й разряд десятки
3-й разряд сотни
1 = 10 0
10 = 10 1
100 = 10 2
2-й класс тысячи 1-й разряд единицы тысяч
2-й разряд десятки тысяч
3-й разряд сотни тысяч
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3-й класс миллионы 1-й разряд единицы миллионов
2-й разряд десятки миллионов
3-й разряд сотни миллионов
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4-й класс миллиарды 1-й разряд единицы миллиардов
2-й разряд десятки миллиардов
3-й разряд сотни миллиардов
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5-й класс триллионы 1-й разряд единицы триллионов
2-й разряд десятки триллионов
3-й разряд сотни триллионов
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
6-й класс квадриллионы 1-й разряд единицы квадриллионов
2-й разряд десятки квадриллионов
3-й разряд десятки квадриллионов
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7-й класс квинтиллионы 1-й разряд единицы квинтиллионов
2-й разряд десятки квинтиллионов
3-й разряд сотни квинтиллионов
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8-й класс секстиллионы 1-й разряд единицы секстиллионов
2-й разряд десятки секстиллионов
3-й разряд сотни секстиллионов
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
9-й класс септиллионы 1-й разряд единицы септиллионов
2-й разряд десятки септиллионов
3-й разряд сотни септиллионов
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10-й класс октиллион 1-й разряд единицы октиллионов
2-й разряд десятки октиллионов
3-й разряд сотни октиллионов
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29

Многих интересуют вопросы о том, как называются большие числа и какое число является самым большим в мире. С этими интересными вопросами и будем разбираться в данной статье.

История

Южные и восточные славянские народы для записи чисел использовали алфавитную нумерацию, причем только те буквы, которые есть в греческом алфавите. Над буквой, которая обозначала цифру, ставили специальный значок “титло”. Числовые значения букв возрастали так же, в каком порядку буквы следовали в греческом алфавите (в славянском алфавите порядок букв был немного другим). В России славянская нумерация сохранилась до конца 17 века, а при Петре I перешли к “арабской нумерации”, которой мы пользуемся и сейчас.

Названия чисел тоже менялись. Так, до 15 века число “двадцать” обозначалось как “два десяти” (два десятка), а потом сократилось для более быстрого произношения. Число 40 до 15 века называлось “четыредесяте”, затем было вытеснено словом “сорок”, обозначающим первоначально мешок, вмещающий 40 беличьих или соболиных шкурок. Название “миллион” появилось в Италии в 1500 году. Оно было образовано добавлением увеличительного суффикса к числу “милле” (тысяча). Позже данное название пришло и в русский язык.

В старинной (XVIII в.) «Арифметике» Магницкого, приводится таблица названий чисел, доведенная до «квадрильона» (10^24, по системе через 6 разрядов). Перельманом Я.И. в книге «Занимательная арифметика» приводятся названия больших чисел того времени, несколько отличающиеся от сегодняшних: септильон (10^42), октальон (10^48), нональон (10^54), декальон (10^60), эндекальон (10^66), додекальон (10^72) и написано, что «далее названий не имеется».

Способы построения названий больших чисел

Существует 2 основных способа названий больших чисел:

  • Американская система , которая используется в США, России, Франции, Канаде, Италии, Турции, Греции, Бразилии. Названия больших чисел строятся довольно просто: вначале идет латинское порядковое числительное, а к нему в конце добавляется суффикс “-иллион”. Исключениям является число “миллион”, которое является названием числа тысяча (mille) и увеличительного суффикса “-иллион”. Количество нулей в числе, которое записано по американской системе, можно узнать по формуле: 3х+3, где х – латинское порядковое числительное
  • Английская система наиболее распространена в мире, ее используются в Германии, Испании, Венгрии, Польше, Чехии, Дании, Швеции, Финляндии, Португалии. Названия чисел по данной системе строятся следующим образом: к латинскому числительному добавляется суффикс “-иллион”, следующее число (в 1000 раз большее) – то же самое латинское числительное, но добавляется суффикс “-иллиард”. Количество нулей в числе, которое записано по английской системе и заканчивается суффиксом “-иллион”, можно узнать по формуле: 6х+3, где х – латинское порядковое числительное. Количество нулей в числах, оканчивающихся суффиксом “-иллиард”, можно узнать по формуле: 6х+6, где х – латинское порядковое числительное.

Из английской системы в русский язык перешло только слово миллиард, которое все же правильнее называть так, как его называют американцы – биллион (поскольку в русском языке используется американская система наименования чисел).

Кроме чисел, которые записаны по американской или английской системе с помощью латинских префиксов, известны внесистемные числа, имеющие собственные названия без латинских префиксов.

Собственные названия больших чисел

Число Латинское числительное Название Практическое значение
10 1 10 десять Число пальцев на 2 руках
10 2 100 сто Примерно половина числа всех государств на Земле
10 3 1000 тысяча Примерное число дней в 3 годах
10 6 1000 000 unus (I) миллион В 5 раз больше числа капель в 10-литр. ведере воды
10 9 1000 000 000 duo (II) миллиард (биллион) Примерная численность населения Индии
10 12 1000 000 000 000 tres (III) триллион
10 15 1000 000 000 000 000 quattor (IV) квадриллион 1/30 длины парсека в метрах
10 18 quinque (V) квинтиллион 1/18 числа зерен из легендарной награды изобретателю шахмат
10 21 sex (VI) секстиллион 1/6 массы планеты Земля в тоннах
10 24 septem (VII) септиллион Число молекул в 37,2 л воздуха
10 27 octo (VIII) октиллион Половина массы Юпитера в килограммах
10 30 novem (IX) нониллион 1/5 числа всех микроорганизмов на планете
10 33 decem (X) дециллион Половина массы Солнца в граммах
  • Вигинтиллион (от лат. viginti – двадцать) — 10 63
  • Центиллион (от лат. centum – сто) — 10 303
  • Миллеиллион (от лат. mille – тысяча) — 10 3003

Для чисел больше тысячи у римлян собственных названий не было (все названия чисел далее были составными).

Составные названия больших чисел

Кроме собственных названий, для чисел больше 10 33 можно получить составные названия с помощью объединения приставок.

Составные названия больших чисел

Число Латинское числительное Название Практическое значение
10 36 undecim (XI) андециллион
10 39 duodecim (XII) дуодециллион
10 42 tredecim (XIII) тредециллион 1/100 от количества молекул воздуха на Земле
10 45 quattuordecim (XIV) кваттордециллион
10 48 quindecim (XV) квиндециллион
10 51 sedecim (XVI) сексдециллион
10 54 septendecim (XVII) септемдециллион
10 57 октодециллион Столько элементарных частиц на Солнце
10 60 новемдециллион
10 63 viginti (XX) вигинтиллион
10 66 unus et viginti (XXI) анвигинтиллион
10 69 duo et viginti (XXII) дуовигинтиллион
10 72 tres et viginti (XXIII) тревигинтиллион
10 75 кватторвигинтиллион
10 78 квинвигинтиллион
10 81 сексвигинтиллион Столько элементарных частиц во вселенной
10 84 септемвигинтиллион
10 87 октовигинтиллион
10 90 новемвигинтиллион
10 93 triginta (XXX) тригинтиллион
10 96 антригинтиллион
  • 10 123 — квадрагинтиллион
  • 10 153 — квинквагинтиллион
  • 10 183 — сексагинтиллион
  • 10 213 — септуагинтиллион
  • 10 243 — октогинтиллион
  • 10 273 — нонагинтиллион
  • 10 303 — центиллион

Дальнейшие названия можно получить прямым или обратным порядком латинских числительных (как правильно, не известно):

  • 10 306 — анцентиллион или центуниллион
  • 10 309 — дуоцентиллион или центдуоллион
  • 10 312 — трецентиллион или центтриллион
  • 10 315 — кватторцентиллион или центквадриллион
  • 10 402 — третригинтацентиллион или центтретригинтиллион

Второй вариант написания больше соответствует построению числительных в латинском языке и позволяет избежать двусмысленностей (например, в числе трецентиллион, которое по первому написанию является и 10 903 и 10 312).

  • 10 603 — дуцентиллион
  • 10 903 — трецентиллион
  • 10 1203 — квадрингентиллион
  • 10 1503 — квингентиллион
  • 10 1803 — сесцентиллион
  • 10 2103 — септингентиллион
  • 10 2403 — октингентиллион
  • 10 2703 — нонгентиллион
  • 10 3003 — миллеиллион
  • 10 6003 — дуомилиаллион
  • 10 9003 — тремиллиаллион
  • 10 15003 — квинквемилиаллион
  • 10 308760 — дуцентдуомилианонгентновемдециллион
  • 10 3000003 — милиамилиаиллион
  • 10 6000003 — дуомилиамилиаиллион

Мириада – 10 000. Название устаревшее и практически не используется. Однако широко используется слово “мириады”, которое означает не определенное число, а бесчисленное, несчетное множество чего-либо.

Гугол (англ. googol ) — 10 100 . О данном числе впервые написал американский математик Эдвард Каснер (Edward Kasner) в 1938 году в журнале Scripta Mathematica в статье “New Names in Mathematics”. По его словам, назвать так число предложил его 9-летний племянник Милтон Сиротта (Milton Sirotta). Данное число стало общеизвестным благодаря поисковой машине Google, названной в честь него.

Асанкхейя (от кит. асэнци – неисчислимый) — 10 1 4 0 . Данное число встречается в известном буддийском трактате Джайна-сутры (100 г. до н.э.). Считается, что данному числу равно количество космических циклов, необходимых для обретения нирваны.

Гуголплекс (англ. Googolplex ) — 10^10^100. Данное число тоже придумал Эдвард Каснер со своим племянником, означает оно единицу с гуголом нулей.

Число Скьюза (Skewes’ number, Sk 1) означает e в степени e в степени e в степени 79, то есть e^e^e^79. Данное число было предложено Скьюзом в 1933 году (Skewes. J. London Math. Soc. 8, 277-283, 1933.) при доказательстве гипотезы Риманна, касающейся простых чисел. Позднее, Риел (te Riele, H. J. J. «On the Sign of the Difference П(x)-Li(x).» Math. Comput. 48, 323-328, 1987) свел число Скьюза к e^e^27/4, что приблизительно равно 8,185·10^370. Однако это число не целое, поэтому в таблицу больших чисел не включено.

Второе число Скьюза (Sk2) равно 10^10^10^10^3, то есть 10^10^10^1000. Данное число было введено Дж. Скьюзом в той же статье для обозначения числа, до которого гипотеза Риманна справедлива.

Для сверхбольших чисел пользоваться степенями неудобно, поэтому существует несколько способов для записи чисел – нотации Кнута, Конвея, Стейнхауза и др.

Хьюго Стейнхауз предложил записывать большие числа внутри геометрических фигур (треугольника, квадрата и круга).

Математик Лео Мозер доработал нотацию Стейнхауза, предложив после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и т.д. Мозер также предложил формальную запись для этих многоугольников, чтобы числа можно было записывать, не рисуя сложные рисунки.

Стейнхауз придумал два новых сверхбольших числа: Мега и Мегистон. В нотации Мозера они записываются так: Мега – 2, Мегистон – 10. Лео Мозер предложил также называть многоугольник с числом сторон, равным меге – мегагоном , а также предложил число “2 в Мегагоне” – 2. Последнее число известно как число Мозера (Moser’s number) или просто как Мозер .

Существуют числа, больше Мозера. Самым большим числом, которое использовалось в математическом доказательстве, является число Грэма (Graham’s number). Оно впервые было использовано в 1977 года в доказательстве одной оценки в теории Рамсея. Данное число связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году. Дональд Кнут (который написал «Искусство программирования» и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:

В общем виде

Грэм предложил G-числа:

Число G 63 называется числом Грэма, часто обозначается просто G. Данное число является самым большим известным числом в мире и занесено в “Книгу рекордов Гиннеса”.

Еще в четвертом классе меня заинтересовал вопрос: "А как называются числа больше миллиарда? И почему?". С тех пор я долго искал всю информацию по этому вопросу и собирал ее по крохам. Но с появлением доступа к Интернету поиск значительно ускорился. Теперь я представляю всю найденную мной информацию, чтоб и другие могли ответить на вопрос: "Как называются большие и очень большие числа?".

Немного истории

Южные и восточные славянские народы для записи чисел пользовались алфавитной нумерацией. Причем у русских роль цифр играли не все буквы, а только те, которые имеются в греческом алфавите. Над буквой, обозначавшей цифру, ставился специальный значок "титло". При этом числовые значения букв возрастали в том же порядке, в каком следовали буквы в греческом алфавите (порядок букв славянского алфавита был несколько иной).

В России славянская нумерация сохранилась до конца 17 века. При Петре I возобладала так называемая "арабская нумерация", которой мы пользуемся и сейчас.

В названиях чисел также происходили изменения. Например, до 15 века число "двадцать" обозначалось как "два десяти" (два десятка), но затем сократилось для более быстрого произношения. До 15 века число "сорок" обозначалось словом "четыредесяте", а в 15-16 веках это слово было вытеснено словом "сорок", которое исходно обозначало мешок, в который помещалось 40 беличьих или соболиных шкурок. О происхождении слова "тысяча" есть два варианта: от старого названия "толстое сто" или от модификации латинского слова centum - "сто".

Название "миллион" впервые появилось в Италии в 1500 г. и образовалось добавлением увеличительного суффикса к числу "милле" - тысяча (т.е. обозначало "большую тысячу"), в русский язык оно пронило позже, а до этого то же значение в русском языке обозначалось числом "леодр". Слово "миллиард" вошло в употребление лишь со времени франко-пруссой войны (1871 г.), когда французам пришлось уплатить Германии контрибуцию в 5 000 000 000 франков. Как и "миллион" слово "миллиард" происходит от корня "тысяча" с добавкой итальянского увеличительного суффикса. В Германии и Америке некоторое время под словом "миллиард" подразумевали число 100 000 000; этим объясняется, что слово миллиардер в Америке стало использоватся до того, как у кого-либо из богачей появилось 1000 000 000 долларов. В старинной (XVIII в.) "Арифметике" Магницкого, приводится таблица названий чисел, доведенная до "квадрильона" (10^24, по системе через 6 разрядов). Перельманом Я.И. в книге "Занимательная арифметика" приводятся названия больших чисел того времени, несколько отличающиеся от сегодняшних: септильон (10^42), октальон (10^48), нональон (10^54), декальон (10^60), эндекальон (10^66), додекальон (10^72) и написано, что "далее названий не имеется".

Принципы построения названий и список больших чисел
Все названия больших чисел построены довольно простым образом: в начале идет латинское порядковое числительное, а в конце к нему добавляется суффикс -иллион. Исключение составляет название "миллион" которое является названием числа тысяча (mille) и увеличительного суффикса -иллион. В мире существует два основных типа названий больших чисел:
система 3х+3 (где х - латинское порядковое числительное) - эта система используется в России, Франции, США, Канаде, Италии, Турции, Бразилии, Греции
и система 6х (где х - латинское порядковое числительное) - эта система наиболее распространена в мире (например: Испания, Германия, Венгрия, Португалия, Польша, Чехия, Швеция, Дания, Финляндия). В ней отсутствующие промежуточные 6х+3 заканчиваются суффиксом -иллиард (из нее мы заимствовали миллиард, который еще называется биллион).

Общий список чисел используемых в России представляю ниже:

Число Название Латинское числительное Увеличивающая приставка СИ Уменьшаяющая приставка СИ Практическое значение
10 1 десять дека- деци- Число пальцев на 2 руках
10 2 сто гекто- санти- Примерно половина числа всех государств на Земле
10 3 тысяча кило- милли- Примерное число дней в 3 годах
10 6 миллион unus (I) мега- микро- В 5 раз больше числа капель в 10-литровом ведере воды
10 9 миллиард (биллион) duo (II) гига- нано- Примерная численность населения Индии
10 12 триллион tres (III) тера- пико- 1/13 внутреннего валового продукта России в рублях за 2003 год
10 15 квадриллион quattor (IV) пета- фемто- 1/30 длины парсека в метрах
10 18 квинтиллион quinque (V) экса- атто- 1/18 числа зерен из легендарной награды изобретателю шахмат
10 21 секстиллион sex (VI) зетта- цепто- 1/6 массы планеты Земля в тоннах
10 24 септиллион septem (VII) йотта- йокто- Число молекул в 37,2 л воздуха
10 27 октиллион octo (VIII) неа- сито- Половина массы Юпитера в килограммах
10 30 нониллион novem (IX) деа- тредо- 1/5 числа всех микроорганизмов на планете
10 33 дециллион decem (X) уна- рево- Половина массы Солнца в граммах

Произношение чисел, идущих далее, часто различается.
Число Название Латинское числительное Практическое значение
10 36 андециллион undecim (XI)
10 39 дуодециллион duodecim (XII)
10 42 тредециллион tredecim (XIII) 1/100 от количества молекул воздуха на Земле
10 45 кваттордециллион quattuordecim (XIV)
10 48 квиндециллион quindecim (XV)
10 51 сексдециллион sedecim (XVI)
10 54 септемдециллион septendecim (XVII)
10 57 октодециллион Столько элементарных частиц на Солнце
10 60 новемдециллион
10 63 вигинтиллион viginti (XX)
10 66 анвигинтиллион unus et viginti (XXI)
10 69 дуовигинтиллион duo et viginti (XXII)
10 72 тревигинтиллион tres et viginti (XXIII)
10 75 кватторвигинтиллион
10 78 квинвигинтиллион
10 81 сексвигинтиллион Столько элементарных частиц во вселенной
10 84 септемвигинтиллион
10 87 октовигинтиллион
10 90 новемвигинтиллион
10 93 тригинтиллион triginta (XXX)
10 96 антригинтиллион
    ...
  • 10 100 - гугол (число придумал 9-летний племянник американского математика Эдварда Каснера)


  • 10 123 - квадрагинтиллион (quadraginta, XL)

  • 10 153 - квинквагинтиллион (quinquaginta, L)

  • 10 183 - сексагинтиллион (sexaginta, LX)

  • 10 213 - септуагинтиллион (septuaginta, LXX)

  • 10 243 - октогинтиллион (octoginta, LXXX)

  • 10 273 - нонагинтиллион (nonaginta, XC)

  • 10 303 - центиллион (Centum, C)

Дальнейшие названия могут быть получены либо прямым, либо обратным порядком латинских числительных (как правильно, не известно):

  • 10 306 - анцентиллион или центуниллион

  • 10 309 - дуоцентиллион или центдуоллион

  • 10 312 - трецентиллион или центтриллион

  • 10 315 - кватторцентиллион или центквадриллион

  • 10 402 - третригинтацентиллион или центтретригинтиллион

Я считаю, что наиболее правильным будет второй вариант написания, так как он более соответствует построению числительных в латинском языке и позволяет избежать двухсмысленностей (например в числе трецентиллион, которое по первому написанию является и 10 903 и 10 312).
Числа далее:
Некоторые литературные ссылки:

  1. Перельман Я.И. "Занимательная арифметика". - М.: Триада-Литера, 1994, стр. 134-140

  2. Выгодский М.Я. "Справочник по элементарной математике". - С-Пб., 1994, стр. 64-65

  3. "Энциклопедия знаний". - сост. В.И. Короткевич. - С-Пб.: Сова, 2006, стр. 257

  4. "Занимательно о физике и математике".- Библиотечка Квант. вып. 50. - М.: Наука, 1988, стр. 50

Есть числа, которые так неимоверно, невероятно велики, что даже для того чтобы записать их, потребуется вся вселенная целиком. Но вот что действительно сводит с ума… некоторые из этих непостижимо больших чисел крайне важны для понимания мира.

Когда я говорю “наибольшее число во Вселенной’’, в действительности я имею в виду самое большое значимое число, максимально возможное число, которое в некотором роде полезно. Есть много претендентов на этот титул, но я сразу же предупреждаю вас: в самом деле существует риск того, что попытка понять все это взорвет ваш мозг. И кроме того, с излишком математики, вы получите мало удовольствия.

Гугол и гуголплекс

Эдвард Каснер

Мы могли бы начать с двух, весьма вероятно, самых больших чисел, о которых вы когда-либо слышали, и это действительно два самых больших числа, которые имеют общепринятые определения в английском языке. (Имеется довольно точная номенклатура, применяемая для обозначения чисел столь больших, как вам хотелось бы, но эти два числа в настоящее время вы не найдете в словарях.) Гугол, с тех пор как он стал всемирно известным (хотя и с ошибками, примеч. в самом деле это googol) в виде Google, родился в 1920 году как способ заинтересовать детей большими числами.

С этой целью Эдвард Каснер (на фото), взял двух своих племянников, Мильтона и Эдвина Сиротт, на прогулку по Нью-Джерси Palisades. Он предложил им выдвигать любые идеи, и тогда девятилетний Мильтон предложил “гугол’’. Откуда он взял это слово, неизвестно, но Каснер решил, что или число, в котором за единицей стоят сто нулей отныне будет называться гугол.

Но молодой Мильтон на этом не остановился, он предложил еще большее число, гуголплекс. Это число, по мнению Мильтона, в котором на первом месте стоит 1, а затем столько нулей, сколько вы могли бы написать до того как устанете. Хотя эта идея очаровательна, Каснер решил, что необходимо более формальное определение. Как он объяснил в своей книге 1940 года издания “Математика и воображение’’, определение Мильтона оставляет открытой рискованную возможность того, что случайный шут может стать математиком, превосходящим Альберта Эйнштейна просто потому, что он обладает большей выносливостью.

Таким образом, Каснер решил, что гуголплекс будет равен , или 1, а затем гугол нулей. Иначе, и в обозначениях, аналогичных тем, с которыми мы будем иметь дело для других чисел, мы будем говорить, что гуголплекс — это . Чтобы показать, насколько это завораживает, Карл Саган однажды заметил, что физически невозможно записать все нули гуголплекса, потому что просто не хватит места во Вселенной. Если заполнить весь объем наблюдаемой Вселенной мелкими частицами пыли размером приблизительно в 1,5 микрона, то число различных способов расположения этих частиц будет примерно равно одному гуголплексу.

Лингвистически говоря, гугол и гуголплекс, вероятно, два самых больших значащих числа (по крайней мере, в английском языке), но, как мы сейчас установим, способов определения “значимости’’ бесконечно много.

Реальный мир

Если мы будем говорить о самом большом значащем числе, существует разумный аргумент, что это в самом деле означает, что нужно найти наибольшее число с реально существующим в мире значением. Мы можем начать с текущей человеческой популяции, которая в настоящее время составляет около 6920 миллионов. Мировой ВВП в 2010 году, по оценкам, составил около 61960 миллиардов долларов, но оба эти числа незначительны по сравнению с примерно 100 триллионами клеток, составляющих организм человека. Конечно, ни одно из этих чисел не может сравниться с полным числом частиц во Вселенной, которое, как правило, считается равным примерно , и это число настолько велико, что наш язык не имеет соответствующего ему слова.

Мы можем поиграть немного с системами мер, делая числа больше и больше. Так, масса Солнца в тоннах будет меньше, чем в фунтах. Прекрасный способ сделать это состоит в использовании системы единиц Планка, которые являются наименьшими возможными мерами, для которых остаются в силе законы физики. Например, возраст Вселенной во времени Планка составляет около . Если мы вернемся в первую единицу времени Планка после Большого Взрыва, то увидим, что плотность Вселенной была тогда . Мы получаем все больше, но мы еще не достигли даже гугола.

Наибольшее число с каким-либо реальным приложением мире — или, в данном случае реальным применением в мирах — вероятно, , — одна из последних оценок числа вселенных в мультивселенной. Это число настолько велико, что человеческий мозг будет буквально не в состоянии воспринять все эти разные вселенные, поскольку мозг способен только примерно на конфигураций. На самом деле, это число, вероятно, самое большое число с каким-либо практическим смыслом, если вы не принимаете во внимание идею мультивселенной в целом. Однако существуют еще намного большие числа, которые там скрываются. Но для того, чтобы найти их, мы должны отправиться в область чистой математики, и нет лучшего начала, чем простые числа.

Простые числа Мерсенна

Часть трудностей состоит в том, чтобы придумать хорошее определение того, что такое “значащее’’ число. Один из способов состоит в том, чтобы рассуждать в терминах простых и составных чисел. Простое число, как вы, наверное, помните из школьной математики, — это любое натуральное число (примеч. не равное единице), которое делится только на и самого себя. Итак, и — простые числа, а и — составные числа. Это означает, что любое составное число может в конечном счете быть представлено своими простыми делителями. В некотором смысле число является более важным, чем, скажем, , потому что нет никакого способа выразить его через произведение меньших чисел.

Очевидно, мы можем пойти немного дальше. , например, на самом деле просто , что означает, что в гипотетическом мире, где наши знания чисел ограничены числом , математик еще может выразить число . Но уже следующее число простое, и это значит, что единственным способом его выразить — непосредственно знать о его существовании. Это означает, что самые большие известные простые числа играют важную роль, а, скажем, гугол – который, в конечном счете просто набор из чисел и , перемноженных между собой — вообще-то и нет. И поскольку простые числа в основном случайные, не известно никаких способов предсказать, что невероятно большое число на самом деле будет простым. По сей день открытие новых простых чисел — это трудное дело.

Математики Древней Греции имели понятие о простых числах, по крайней мере, уже в 500 году до нашей эры, а 2000 лет спустя люди все еще знали, какие числа простые только примерно до 750. Мыслители времен Евклида увидели возможность упрощения, но вплоть до эпохи Возрождения математики не могли действительно использовать это на практике. Эти числа известны как числа Мерсенна, они названы в честь французского ученого XVII века Марина Мерсенна. Идея достаточно проста: число Мерсенна — это любое число вида . Так, например, , и это число простое, то же самое верно и для .

Гораздо быстрее и легче определить простые числа Мерсенна, чем любой другой вид простых чисел, и компьютеры напряженно работают в их поисках на протяжении последних шести десятилетий. До 1952 года крупнейшим известным простым числом было число — число с цифрами. В том же году на компьютере вычислили, что число простое, и это число состоит из цифр, что делает его уже намного больше, чем гугол.

Компьютеры с тех пор были на охоте, и в настоящее время -е число Мерсенна является самым большим простым числом, известным человечеству. Обнаруженное в 2008 году, оно составляет — число с почти миллионами цифр. Это самое большое известное число, которое не может быть выражено через какие-либо меньшие числа, и если вы хотите помочь найти еще большее число Мерсенна, вы (и ваш компьютер) всегда можете присоединиться к поиску на сайте http://www.mersenne.org/.

Число Скьюза

Стэнли Скьюз

Снова обратимся к простым числам. Как я уже говорил, они ведут себя в корне неправильно, это означает, что нет никакого способа предсказать, каким будет следующее простое число. Математики были вынуждены обратиться к некоторым довольно фантастическим измерениям, чтобы придумать какой-нибудь способ предсказать будущие простые числа даже каким-нибудь туманным способом. Наиболее успешной из этих попыток, вероятно, является функция, считающая простые числа, которую придумал в конце XVIII века легендарный математик Карл Фридрих Гаусс.

Я избавлю вас от более сложной математики — так или иначе, у нас много еще впереди — но суть функции заключается в следующем: для любого целого можно оценить, сколько существует простых чисел, меньших . Например, если , функция предсказывает, что должно быть простых чисел, если — простых числа, меньших , и если , то существует меньших чисел, которые являются простыми.

Расположение простых чисел действительно имеет нерегулярный характер, и это всего лишь приближение фактического числа простых чисел. На самом деле мы знаем, что есть простых чисел, меньших , простых чисел меньших , и простых чисел меньших . Это отличная оценка, что и говорить, но это всегда только оценка… и, более конкретно, оценка сверху.

Во всех известных случаях до , функция, находящая количество простых чисел, слегка преувеличивает фактическое количество простых чисел меньших . Математики когда-то думали, что так будет всегда, до бесконечности, что это, безусловно, относится и к некоторым невообразимо огромным числам, но в 1914 году Джон Идензор Литтлвуд доказал, что для какого-то неизвестного, невообразимо огромного числа эта функция начнет выдавать меньшее количество простых чисел, а затем она будет переключаться между оценкой сверху и оценкой снизу бесконечное число раз.

Охота была на точку начала скачков, и вот тут появился Стэнли Скьюз (см. фото). В 1933 году он доказал, что верхняя граница, когда функция, приближающая количество простых чисел впервые дает меньшее значение — это число . Трудно по-настоящему понять даже в наиболее абстрактном смысле, что на самом деле представляет собой это число, и с этой точки зрения это было наибольшее число, когда-либо использованное в серьезном математическом доказательстве. С тех пор математики смогли уменьшить верхнюю границу до относительно маленького числа , но исходное число осталось известно как число Скьюза.

Итак, насколько велико число , которое делает карликом даже могучий гуголплекс? В словаре The Penguin Dictionary of Curious and Interesting Numbers Дэвид Уэллс рассказывает об одном способе, с помощью которого математику Харди удалось осмыслить размер числа Скьюза:

“Харди думал, что это “самое большое число, когда-либо служившее какой-либо определенной цели в математике’’, и предположил, что если играть в шахматы со всеми частицами Вселенной как фигурами, один ход состоял бы в перестановке местами двух частиц, и игра прекращалась бы, когда одна и та же позиция повторялась бы третий раз, то число всех возможных партий было бы равно примерно числу Скьюза’’.

И последнее перед тем как двигаться дальше: мы говорили о меньшем из двух чисел Скьюза. Существует другое число Скьюза, которое математик нашел в 1955 году. Первое число получено на том основании, что так называемая гипотеза Римана истинна — это особенно сложная гипотеза математики, которая остается недоказанной, очень полезна, когда речь идет о простых числах. Тем не менее, если гипотеза Римана является ложной, Скьюз обнаружил, что точка начала скачков увеличивается до .

Проблема величины

Прежде чем мы перейдем к числу, рядом с которым даже число Скьюза выглядит крошечным, нам нужно немного поговорить о масштабе, потому что иначе у нас нет возможности оценить, куда мы собираемся идти. Сначала давайте возьмем число — это крошечное число, настолько малое, что люди могут действительно иметь интуитивное понимание того, что оно значит. Есть очень мало чисел, которые соответствуют этому описанию, так как числа больше шести перестают быть отдельными числами и становятся “несколько’’, “много’’ и т.д.

Теперь давайте возьмем , т.е. . Хотя мы в действительности не можем интуитивно, как это было для числа , понять, что такое , представить себе то, чем является очень легко. Пока все идет хорошо. Но что произойдет, если мы перейдем к ? Это равно , или . Мы очень далеки от способности представить себе эту величину, как и любую другую, очень большую — мы теряем способность постигать отдельные части где-то около миллиона. (Правда, безумно большое количество времени заняло бы, чтобы действительно досчитать до миллиона чего бы то ни было, но дело в том, что мы все еще способны воспринимать это число.)

Тем не менее, хотя мы не можем представить , мы по крайней мере в состоянии понять в общих чертах, что такое 7600 млрд, возможно, сравнивая его с чем-то таким, как ВВП США. Мы перешли от интуиции к представлению и к простому пониманию, но по крайней мере у нас еще есть некоторый пробел в понимании того, что такое число. Это вот-вот изменится, по мере нашего продвижения на еще одну ступень вверх по лестнице.

Для этого нам нужно перейти к обозначению, введенному Дональдом Кнутом, известному как стрелочная нотация. В этих обозначениях можно записать в виде . Когда мы затем перейдем к , число, которое мы получим, будет равно . Это равно где в общей сложности троек. Мы теперь значительно и по-настоящему превзошли все другие числа, о которых уже говорили. В конце концов, даже в самых больших из них было всего три или четыре члена в ряду показателей. Например, даже супер-число Скьюза — это “только’’ — даже с поправкой на то, что и основание, и показатели гораздо больше, чем , оно по-прежнему абсолютно ничто по сравнению с величиной числовой башни с млрд членов.

Очевидно, что нет никакого способа для постижения настолько огромных чисел… и тем не менее, процесс, посредством которого они созданы, еще можно понять. Мы не могли бы понять реальное количество, которое задается башней степеней, в которой млрд троек, но мы можем в основном представить такую башню со многими членами, и действительно приличный суперкомпьютер сможет хранить в памяти такие башни, даже если он не сможет вычислить их действительные значения.

Это становится все более абстрактным, но дальше будет только хуже. Вы можете подумать, что башня степеней , длина показателя которой равна (более того, в предыдущей версии этого поста я сделал именно эту ошибку), но это просто . Другими словами, представьте, что у вас есть возможность вычислить точное значение степенной башни из троек, которая состоит из элементов, а потом вы взяли это значение и создали новую башню с таким количеством в нем,… которое дает .

Повторите этот процесс с каждым последующим числом (примеч. начиная справа), пока вы не сделаете это раза, и тогда наконец вы получите . Это число, которое просто невероятно велико, но по крайней мере шаги его получения вроде бы понятны, если все делать очень медленно. Мы больше не можем понять числа или представить процедуру, благодаря которой оно получается, но, по крайней мере, мы можем понять основной алгоритм, только в достаточно большой срок.

Теперь подготовим ум к тому, чтобы его действительно взорвать.

Число Грэма (Грехема)

Рональд Грэм

Вот как вы получите число Грэма, которое занимает место в Книге рекордов Гиннеса как самое большое число, которое когда-либо использовали в математическом доказательстве. Совершенно невозможно представить, насколько оно велико, и столь же трудно точно объяснить, что это такое. В принципе, число Грэма появляется, когда имеют дело с гиперкубами, которые являются теоретическими геометрическими формами с более чем тремя измерениями. Математик Рональд Грэм (см. фото) хотел выяснить, при каком наименьшем числе измерений определенные свойства гиперкуба будут оставаться устойчивыми. (Простите за такое расплывчатое объяснение, но я уверен, что нам всем нужно получить по крайней мере две ученые степени по математике, чтобы сделать его более точным.)

В любом случае число Грэма является оценкой сверху этого минимального числа измерений. Итак, насколько велика эта верхняя граница? Давайте вернемся к числу , такому большому, что алгоритм его получения мы можем понять достаточно смутно. Теперь, вместо того, чтобы просто прыгать вверх еще на один уровень до , мы будем считать число , в котором есть стрелки между первой и последней тройками. Теперь мы находимся далеко за пределами даже малейшего понимания того, что такое это число или даже от того, что нужно делать, чтобы его вычислить.

Теперь повторим этот процесс раза (примеч. на каждом следующем шаге мы пишем число стрелок, равное числу, полученному на предыдущем шаге).

Это, дамы и господа, число Грэма, которое примерно на порядка стоит выше точки человеческого понимания. Это число, которое настолько больше, чем любое число, которое можно себе представить — это гораздо больше, чем любая бесконечность, которую вы могли бы когда-либо надеяться себе представить — оно просто не поддается даже самому абстрактному описанию.

Но вот странная вещь. Поскольку число Грэма в основном — это просто тройки, перемноженные между собой, то мы знаем некоторые его свойства без фактического его вычисления. Мы не можем представить число Грэма с помощью любых знакомых нам обозначений, даже если бы мы использовали всю Вселенную, чтобы записать его, но я могу назвать вам прямо сейчас последние двенадцать цифр числа Грэма: . И это еще не все: мы знаем по крайней мере последних цифр числа Грэма.

Конечно, стоит помнить, что это число только верхняя граница в исходной задаче Грэма. Вполне возможно, что фактическое число измерений, необходимых для выполнения нужного свойства гораздо, гораздо меньше. На самом деле, еще с 1980-х годов считалось, по мнению большинства специалистов в этой области, что фактически число измерений всего лишь шесть — число настолько малое, что мы можем понять его на интуитивном уровне. С тех пор нижняя граница была увеличена до , но есть еще очень большой шанс, что решение задачи Грэма не лежит рядом с числом столь же большим, как число Грэма.

К бесконечности

Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма . Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что, как я могу надеяться, когда-либо смогут разумно объяснить. Для тех, кто достаточно безрассуден достаточно, чтобы пойти еще дальше, предлагается литература для дополнительного чтения на свой страх и риск.

Ну а сейчас удивительная цитата, которая приписывается Дугласу Рею (примеч. честно говоря, звучит довольно забавно ):

“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.

Вопрос "Какое самое большое число в мире?", по меньшей мере, некорректен. Существуют как различные системы исчислений – десятичная, двоичная и шестнадцатеричная, так и разнообразные категории чисел – полупростые и простые, причем последние делятся на законные и незаконные. Кроме того, есть числа Скьюза (Skewes" number), Стейнхауза и других математиков, которые то ли в шутку, то ли всерьез изобретают и выкладывают на суд публики такие экзоты, как «мегистон» или «мозер».

Какое самое большое число в мире в десятичной системе

Из десятичной системы большинству «нематематиков» хорошо известны миллион, миллиард и триллион. Причем, если миллион у россиян, в основном, ассоциируется с долларовой взяткой, которую можно унести в чемоданчике, то куда распихать миллиард (не говоря уже о триллионе) североамериканских денежных знаков - у большинства не хватает фантазии. Однако в теории больших чисел существуют такие понятия, как квадриллион (десять в пятнадцатой степени – 1015), секстиллион (1021) и октиллион (1027).

В английской, наиболее широко распространенной в мире десятичной системе максимальным числом считается дециллион - 1033.

В 1938 году, в связи с развитием прикладной математики и расширением микро- и макромира, профессор Колумбийского университета (США), Эдвард Каснер (Edward Kasner) опубликовал на страницах журнала «Scripta Mathematica» предложение своего девятилетнего племянника использовать в десятичной системе исчисления в качестве самого большого числа «гугол» («googol») – представляющее собой десять в сотой степени (10100), который на бумаге выражается как единица со ста нулями. Однако они не остановились на этом и через несколько лет предложили ввести в обращение новое самое большое число в мире – «гуголплекс» (googolplex), которое представляет собой десять, возведенное в десятую степень и еще раз возведенное в сотую степень – (1010)100, выражаемое единицей, к которой справа приписан гугол нулей. Впрочем, для большинства даже профессиональных математиков и «гугол», и «гуголплекс» представляют чисто умозрительный интерес, и вряд ли в повседневной практике их можно к чему-либо применить.

Экзотические числа

Какое самое большое число в мире среди простых чисел – тех, которые могут делиться только на самих себя и на единицу. Одним из первых, кто зафиксировал самое большое простое число, равное 2 147 483 647, был великий математик Леонард Эйлер. На январь 2016 года, таким числом признано выражение, вычисляемое как 274 207 281 – 1.