Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике

Окна и двери

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряжен­ность поля Е обратно пропорциональна e. Вектор напряженности Е , переходя через границу диэлектриков, претерпевает скач­кообразное изменение, создавая тем са­мым неудобства при расчете электростати­ческих полей. Поэтому оказалось необхо­димым помимо вектора напряженности характеризовать поле еще вектором элек­трического смещения, который для элек­трически изотропной среды по определе­нию равен -

D = e 0 eE. (89.1)

Используя формулы (88.6) и (88.2), век­тор электрического смещения можно вы­разить как

D= e 0 E+P. (89.2)

Единица электрического смещения - кулон на метр в квадрате (Кл/м 2).

Рассмотрим, с чем можно связать век­тор электрического смещения. Связанные заряды появляются в диэлектрике при на­личии внешнего электростатического поля, создаваемого системой свободных элек­трических зарядов, т. е. в диэлектрике на электростатическое поле свободных заря­дов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором на­пряженности Е , и потому он зависит от свойств диэлектрика. Вектором D описыва­ется электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вы­звать, однако, перераспределение свободных зарядов, создающих поле. Поэтому век­тор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распре­делении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е , полеD изо­бражается с помощью линий электриче­ского смещения, направление и густота которых определяются точно так же, как и для линий напряженности.

Линии вектора Е могут начинаться и заканчиваться на любых зарядах - свободных и связанных, в то время как линии вектора D - только на свободных зарядах. Через области поля, где находят­ся связанные заряды, линии вектора D про­ходят не прерываясь.

Для произвольной замкнутой повер­хности 5 поток вектора D сквозь эту по­верхность

Теорема Гаусса для электростатиче­ского поля в диэлектрике:


т. е. поток вектора смещения электроста­тического поля в диэлектрике сквозь про­извольную замкнутую поверхность равен алгебраической сумме заключенных внут­ри этой поверхности свободных электриче­ских зарядов. В такой форме теорема Га­усса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума D n =e 0 Е n (e=1), тогда поток вектора напряженности Е сквозь произвольную замкнутую поверхность (ср. с (81.2)) равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как


Соответственно алгебраические суммы свободных и связан­ных зарядов, охватываемых замкнутой по­верхностью 5. Однако эта формула не­приемлема для описания поля Е в ди­электрике, так как она выражает свойства неизвестного поля Е через связанные за­ряды, которые, в свою очередь, определя­ются им же. Это еще раз доказывает целе­сообразность введения вектора электриче­ского смещения.

Конец работы -

Эта тема принадлежит разделу:

Закон сохранения электрического заряда

Рассмотрим связь между векторами Е и D на границе раздела двух однород ных изотропных диэлектриков диэлектри ческие проницаемости которых e и e... откуда...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Закон сохранения электрического заряда
Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягива­ет легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легк

Закон Кулона
Закон взаимодействия неподвижных то­чечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутиль­ных весов, подобных тем, которые (см. §22) использовались Г.Кавендишем для

Электростатическое поле. Напряженность электростатического поля
Если в пространство, окружающее элек­трический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружаю­щем электрические заряды, существует

Принцип суперпозиции электростатических полей
Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвиж­ных зарядов q1

Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме
Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электростатических полей можно значительно упростить, ис­пользуя выведенную немецким ученым К. Гауссом (

Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
1. Поле равномерно заряженной бесконечной плоскости.Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотно­стью+ s (s=dQ/dS-заряд, приходящийс

Работа электрического поля. Циркуляция вектора напряженности электростатического поля
Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль про­извольной траектории (рис. 132) переме­щается другой точечный заряд Q0, то сила, при

Потенциал электростатического поля. Разность потенциалов.
Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. §12). Как из­вест

Напряженность как градиент потенциала. Эквипотенциальные поверхности
Найдем взаимосвязь между напряженно­стью электростатического поля, являю­щейся его силовой характеристикой, и по­тенциалом - энергетической характери­стикой поля. Работа по п

Вычисление разности потенциалов по напряженности поля
Установленная выше связь между напря­женностью поля и потенциалом позволяет по известной напряженности поля найти разность потенциалов между двумя про­извольными точками этого поля.

Типы диэлектриков. Виды поляризации
Диэлектрик (как и всякое вещество) со­стоит из атомов и молекул. Так как поло­жительный заряд всех ядер молекулы ра­вен суммарному заряду электронов, то молекула в целом электрически нейтраль­на. Е

Поляризованность. Напряженность поля в диэлектрике. Свободные и связанные заряды. Диэлектрическая проницаемость среды
При помещении диэлектрика во внешнее электростатическое поле он поляризуется, т. е. приобретает отличный от нуля дипольный момент

Проводники в электростатическом поле
Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­

Электрическая емкость уединенного проводника
Рассмотрим уединенный проводник,т. е. проводник, который удален от других проводников, тел и зарядов. Его потенци­ал, согласно (84.5), прямо пропорциона­лен заряду проводника. Из о

Конденсаторы
Как видно из § 93, для того чтобы про­водник обладал большой емкостью, он дол­жен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых раз­мера

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
1. Энергия системы неподвижных точеч­ных зарядов.Электростатические силы взаимодействия консервативны (см. § 83); следовательно, система зарядов обладает потенциальной эне

Энергия электростатического поля.
Преобразуем формулу (95.4), выражаю­щую энергию плоского конденсатора по­средством зарядов и потенциалов, вос­пользовавшись выражением для емкости плоского конденсатора (C = e0e/d) и раз

Электрический ток, сила и плотность тока
В электродинамике- разделе учения об электричестве, в котором рассматривают­ся явлени

Сторонние силы. Электродвижущая сила и напряжение
Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от то­чек с большим потенциалом к точкам с меньш

Закон Ома. Сопротивление проводников
Немецкий физик Г. Ом (1787-1854) эк­спериментально установил, что сила то­ка I, текущего по однородному металличе­скому проводнику (т. е. проводнику, в ко­тором не действуют сторонние силы),

Закон Ома для неоднородного участка цепи
Рассмот­рим неоднородный участок цепи,где дей­ствующую э.д.с. на участке 1-2 обозна­чим через ξ12, а приложенную на концах участка разность пот

Работа и мощность тока. Закон Джоуля - Ленца
Рассмотрим однородный проводник, к кон­цам которого приложено напряжение U. За время At через сечение проводника перено­сится заряд dq = Idt. Так как ток пред­ставляет собой пе

Правила Кирхгофа для разветвленных цепей
Обобщенный закон Ома (см. (100.3)) по­зволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут и

Работа выхода электронов из металла
Как показывает опыт, свободные электро­ны при обычных температурах практиче­ски не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препят

Эмиссионные явления и их применение
Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего на­блюдается явление испускания электро­нов, или

Ионизация газов. Несамостоятельный газовый разряд
Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воз­дух заряженный электрометр с хорошей изоляц

Самостоятельный газовый разряд и его типы
Разрядв газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятельным. Рассмотрим условия возникновения са­мостоятельного разряда. Как уж

Плазма и ее свойства
Плазмойназывается сильно ионизован­ный газ, в котором концентрации положи­тельных и отрицательных зарядов практи­чески одинаковы. Различают высокотемпе­ратурную плазму,

Магнитное поле и его характеристики
Опыт показывает, что, подобно тому, как в пространстве, окружающем электриче­ские заряды, возникает электростатиче­ское поле, так в пространстве, окружаю­щем токи и постоянные магниты, возника­ет с

Закон Био - Савара - Лапласа и его применение к расчету магнитного поля
Магнитное поле постоянных токов различ­ной формы изучалось французскими уче­ными Ж. Био (1774-1862) и Ф. Саваром (1791 -1841). Результаты этих опытов бы­ли обобщены выдающимся французским математик

Закон Ампера. Взаимодействие параллельных токов
Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая

Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
Если два параллельных проводника с то­ком находятся в вакууме (m=1), то сила взаимодействия на единицу длины про­водника, согласно (111.5), равна

Магнитное поле движущегося заряда
Каждый проводник с током создает в ок­ружающем пространстве магнитное поле. Электрический же ток предс

Действие магнитного поля на движущийся заряд
Опыт показывает, что магнитное поле дей­ствует не только на проводники с током (см. §111), но и на отдельные заряды, движущиеся в магнитном поле. Сила, дей­ствующая на электрический заряд Q,

Движение заряженных частиц в магнитном поле
Выражение для силы Лоренца (114.1) по­зволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения за­ряженной ч

Ускорители заряженных частиц
Ускорителямизаряженных частиц назы­ваются устройства, в которых под дей­ствием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (э

Эффект Холла
Эффект Холла (1879) - это возникнове­ние в металле (или полупроводнике) с то­ком плотностью j, помещенном в магнит­ное поле В, электрического поля в направ­лении,

Циркуляция вектора В для магнитного поля в вакууме
Аналогично циркуляции вектора напря­женности электростатического поля (см. § 83) введем циркуляцию вектора магнитной индукции. Циркуляцией векто­ра Впо заданному замкнутому контуру

Магнитное поле соленоида и тороида
Рассчитаем, применяя теорему о циркуля­ции, индукцию магнитного поля внутри соленоида.Рассмотрим соленоид длиной l,

Поток вектора магнитной индукции. Теорема Гаусса для поля В
Потоком вектора магнитной индукции (магнитным потоком)через площадку dS называется скалярная физическая величи­на, равная dФB=B

Работа по перемещению проводника и контура с током в магнитном поле
На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. §111). Если проводник не закреплен (например, одна из сторон кон­тура изготовлена в виде подвижной пере­мычки,

Магнитные моменты электронов и атомов
Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процесса­ми, происходящими в веществе. Свойства среды учитывались формально с помощью магнит

Диа- и парамагнетизм
Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необход

Намагниченность. Магнитное поле в веществе
Подобно тому, как для количественного описания поляризации диэлектриков вво­дилась поляризованность (см. §88), для количественного описания намагничения магнетиков вводят векторную величину -

Ферромагнетики и их свойства
Помимо рассмотренных двух классов ве­ществ - диа- и парамагнетиков, называе­мых слабомагнитными веществами,су­ществуют еще сильномагнитные вещест­ва - ферромагнетики

Природа ферромагнетизма
Рассматривая магнитные свойства ферро­магнетиков, мы не вскрывали физическую природу этого явления. Описательная тео­рия ферромагнетизма была разработана французским физиком П. Вейссом (1865-1940).

Закон Фарадея и его вывод из закона сохранения энергии
Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром

Вращение рамки в магнитном поле
Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию электрического тока. Для этой цели используются генера­торы,принцип действия котор

Индуктивность контура. Самоиндукция
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био - Савара-Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром ма

Токи при размыкании и замыкании цепи
При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции.

Взаимная индукция
Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в конту­ре 1 течет ток I1, то магнитный поток, со­з

Трансформаторы
Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в

Энергия магнитного поля
Проводник, по которому протекает элек­трический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезно­вением тока. Магнитное поле, подобно э

Вихревое электрическое поле
Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследст

Ток смещения
Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трич

Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электр

Экспериментальное получение электромагнитных волн
Существование электромагнитных волн - переменного электромагнитного поля, рас­пространяющегося в пространстве с ко­нечной скоростью,- вытекает из уравне­ний Максвелла (см.

Дифференциальное уравнение электромагнитной волны
Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существова­ние электромагнитных волн. Можно по­казать, что для однородной и изотропн

Энергия электромагнитных волн. Импульс электромагнитного поля
Возможность обнаружения электромаг­нитных волн указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны скла­дывается из объемных плотностей wэл

Излучение диполя. Применение электромагнитных волн
Простейшим излучателем электромагнит­ных волн является электрический диполь, электрический момент которого изменяет­ся во времени по гармоническому закону р = р

Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электростатических полей можно значительно упростить, ис­пользуя выведенную немецким ученым К. Гауссом (1777-1855) теорему, опреде­ляющую поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

В соответствии с формулой (79.3) по­ток вектора напряженности сквозь сфери­ческую поверхность радиуса r , охватывающую точечный заряд Q , находящийся в ее центре (рис. 124),

Этот результат справедлив для замкнутой поверхности любой формы. Действитель­но, если окружить сферу (рис. 124) про­извольной замкнутой поверхностью, то каждая линия напряженности, пронизыва­ющая сферу, пройдет и сквозь эту по­верхность.

Если замкнутая поверхность произ­вольной формы охватывает заряд (рис. 125), то при пересечении любой вы­бранной линии напряженности с поверхно­стью она то входит в нее, то выходит из нее. Нечетное число пересечений при вы­числении потока в конечном счете сводит­ся к одному пересечению, так как поток считается положительным, если линии на­пряженности выходят из поверхности, и отрицательным для линий, входящих

в поверхность. Если замкнутая поверх­ность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в повер­хность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности лю­бой формы, если она замкнута и заключа­ет в себя точечный заряд Q, поток вектора Е будет равен Q/ 0 , т. е.

Знак потока совпадает со знаком заряда Q. Рассмотрим общий случай произволь­ной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемо­го всеми зарядами, равна сумме напря-женностей Е i , создаваемых каждым за­рядом в отдельности: ; . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Q i / 0 . Следовательно,

Формула (81.2) выражает теорему Га­усса для электростатического поля в ваку­уме: поток вектора напряженности элек­тростатического поля в вакууме сквозь произвольную замкнутую поверхность ра­вен алгебраической сумме заключенных внутри этой поверхности зарядов, делен­ной на  0 . Эта теорема выведена матема­тически для векторного поля любой при­роды русским математиком М. В. Остро­градским (1801 -1862), а затем неза­висимо от него применительно к электро­статическому полю - К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой

объемной плотностью =dQ/dV, различной

в разных местах пространства. Тогда сум­марный заряд, заключенный внутри замкнутой поверхности S, охватывающей не­который объем V,

Используя формулу (81.3), теорему Гаус­са (81.2) можно записать так:

§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотно­стью +  (=dQ/dS-заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим ци­линдр, основания которого параллельны заря­женной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cos=0), то поток вектора напряженности сквозь боковую повер­хность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания E n совпадает с Е), т.е. равен 2ES. Заряд, заключенный внутри построенной цилин­дрической поверхности, равен S. Согласно теореме Гаусса (81.2), 2ES = S/ 0 , откуда

E=/(2 0). (82.1)

Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, ины-

ми словами, поле равномерно заряженной плоскости однородно.

2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разнои­менными зарядами с поверхностными плотно­стями + и -. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верх­ние стрелки соответствуют полю от положитель­но заряженной плоскости, нижние - от отрица­тельной плоскости. Слева и справа от плоско­стей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E =0. В области между плоскостями E =E + +E - (E + и E - определяются по формуле (82.1)), поэтому ре­зультирующая напряженность

E =/ 0 . (82.2)

Таким образом, результирующая напряжен­ность поля в области между плоскостями описы­вается формулой (82.2), а вне объема, ограни­ченного плоскостями, равна нулю.

3. Поле равномерно заряженной сфериче­ской поверхности. Сферическая поверхность ра­диуса R с общим зарядом Q заряжена равно­мерно с поверхностной плотностью +0. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией.

Поэтому линии напря­женности направлены радиально (рис. 128). Построим мысленно сферу радиуса r , имеющую общий центр с заряженной сферой. Если r > R , то внутрь поверхности попадает весь заряд Q , создающий рассматриваемое поле, и, по теореме Гаусса (81.2), 4r 2 E =Q / 0 , откуда

При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. Гра­фик зависимости E от r приведен на рис. 129. Если r " , то замкнутая поверхность не со­держит внутри зарядов, поэтому внутри равно­мерно заряженной сферической поверхности электростатическое поле отсутствует (E =0).

Рис.1.7. К выводу теоремы Гаусса.

Определим поток напряженности электростати­ческого поля зарядов q 1 ,q 2 ,...q n в вакууме (=1) через произвольную замкнутую поверхность, окружающую эти заряды.

Рассмотрим сначала случай сферической повер­х­ности радиусом R, окружающей один заряд +q, нахо­дящийся в ее центре (рис.1.7).

, где - есть интеграл по замкнутой поверхности сферы. Во всех точках сферы модуль вектораодинаков, а сам он направлен перпендикулярно поверхности. Следовательно. Площадь поверхности сферы равна. Отсюда следует, что

.

П

Рис.1.8. Пересечение силовыми линиями поверхности, охватывающей заряд (показано в сечении).

олученный результат будет справедлив и для поверхностиS произвольной формы, так как ее пронизывает такое же количество силовых линий.

На рисунке 1.8 представлена произвольная замкнутая поверхность, охватываю­щая заряд q0. Некоторые линии напряженности то выходят из поверхности, то вхо­дят в нее. Для всех линий напряженности число пересечений с поверхностью являет­ся нечетным.

Как отмечалось в предыдущем параграфе, линии напря­женности, выходя­щие из объема, ограниченного замкнутой поверхностью, соз­дают положительный поток Ф е; линии же, входящие в объем, создают отрицательный поток -Ф е. Потоки линий при входе и выходе компенсируются. Таким образом, при расчете суммар­ного потока через всю поверхность следует учитывать лишь одно (не скомпенсированное) пересечение замкнутой поверхности каждой линией напряженности.

Если заряд q не охватывается замкнутой поверхностью S, то количество силовых линий, входящих в данную поверх­ность и выходящих из нее, одинаково (рис.1.9). Суммарный поток вектора через такую поверхность равен нулю: Ф Е =0.

Р

Рис.1.9. Пересечение силовыми линиями поверхности, не охватывающей заряд (показано в сечении).

ассмотрим самый общий случай поверхности про­извольной формы, охватывающейn зарядов. По принципу суперпозиции электростатических полей напряженность , создаваемая зарядамиq 1 ,q 2 ,...q n равна векторной сумме напряженностей, создавае­мых каждым зарядом в отдельности: . Проекция вектора- результирующей на­пряженности поля на направление нормали к пло­щадкеdS равна алгебраической сумме проекций всех векторов на это направле­ние:,

Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заря­дов, охватываемых этой поверхностью, деленной на электрическую постоян­ную 0 . Эта формулировка представляет собой теорему К.Гаусса.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объемаV, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде.

Теорема Гаусса представляет значительный практический интерес: с ее помо­щью можно определить напряженности полей, создаваемых заряженными телами различной формы.

1. 9. Применение теоремы Гаусса для расчета напряженности электростатического поля.

    Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью зарядов +.

Пусть поверхностная плотность зарядов или заряд, приходящийся на единицу поверхности . Силовые линии поля перпендикулярны этой плоскости и направлены от нее в обе стороны (рис.1.10).

Построим замкнутую цилиндрическую поверхность с основаниями dS, парал­лельными заряженной поверхности и образующей, параллельной вектору . Сле­дуя последнему условию, поток напряженности Ф Е через боковую поверхность ци­линдра равен нулю. Поэтому полный поток через цилиндрическую поверхность ра­вен сумме потоков сквозь его основания. Так как вектор перпендикулярен осно­ваниям, Е n =Е и суммарный поток Ф Е можно записать Ф Е =2ЕdS.


Рис.1.10. Определение на­пряженности поля беско­нечной заряженной плос­кости.

Согласно теореме Гаусса , где- заряд, охватываемый цилиндрической по­верхностью. Таким образом

, .

Если плоскость помещена в среду с относительной ди­электрической проницаемостью , то напряженность электростатического поля, соз­даваемая плоскостью, равна .

Из формулы следует, что Е не зависит от расстояния между плоскостью и точкой на­блюдения, т.е. поле равномерно заряженной бесконечной плоскости однородно.

    Поле двух бесконечных разноименно заряженных плоскостей.


Рис.1.11. Определение на­пряженности поля двух параллельных разноимен­но заряженных плоско­стей.

На рис.1.11 перпендикулярно чертежу располо­же­ны две такие плоскости с поверхностными плотно­стями за­рядов + и -. Силовые линии плоскостей перпенди­ку­лярны им и параллельны между собой. Силовые ли­нии выходят из плоскости + и входят в плоскость ‑. На ри­сунке сплошными стрелками изо­бражено поле плоскости + и пунктирными - поле плоскости -.

Напряженности полей обеих плоскостей равны по абсолютной величине . Однако, справа и слева от плоскостей напряженностиинаправлены проти­во­положно, поэтому суммарная Е=0 и поле отсутствует. В области между плоскос­тями инаправлены одинаково, поэтому.