Движение в однородном электрическом поле. Движение электрона в однородных полях. Анализ энергии электронов методом тормозящего поля

Окна и двери

Если частица, обладающая зарядом е, движется в пространстве, где имеется электрическое поле с напряжённостью E то на неё действует сила eE. Если, кроме электрического, имеется магнитное поле, то на частицу действует ещё сила Лоренца, равная e , где u - скорость движения частицы относительно поля, B - магнитная индукция. Поэтому согласно второму закону Ньютона уравнение движения частиц имеет вид:

Написанное векторное уравнение распадается на три скалярных уравнения, каждое из которых описывает движение вдоль соответствующей координатной оси.

В дальнейшем мы будем интересоваться только некоторыми частными случаями движения. Предположим, что заряженные частицы, двигавшиеся первоначально вдоль оси Х со скоростью попадают в электрическое поле плоского конденсатора.


Если зазор между пластинами мал по сравнению с их длиной, то краевыми эффектами можно пренебречь и считать электрическое поле между пластинами однородным. Направляя ось Y параллельно полю, мы имеем: . Так как магнитного поля нет, то. В рассматриваемом случае на заряженные частицы действует только сила со стороны электрического поля, которая при выбранном направлении координатных осей целиком направлена по оси Y. Поэтому траектория движения частиц лежит в плоскости XY и уравнения движения принимают вид:

Движение частиц в этом случае происходит под действием постоянной силы и подобно движению горизонтально брошенного тела в поле тяжести. Поэтому ясно без дальнейших расчетов, что частицы будут двигаться по параболам.

Вычислим угол , на который отклонится пучок частиц после прохождения через конденсатор. Интегрируя первое из уравнений (3.2), находим:

Интеграция второго уравнения даёт:

Так как при t=0 (момент вступления частицы в конденсатор) u(y)=0, то c=0, и поэтому

Отсюда получаем для угла отклонения:

Мы видим, что отклонение пучка существенно зависит от величины удельного заряда частиц e/m

§ 72. Движение заряженной частицы в однородном магнитном поле

Представим себе заряд , движущийся в однородноммагнитном поле со скоростью v, перпендикулярной к В. Магнитная сила сообщает заряду перпендикулярное к скорости ускорение

(см. формулу (43.3); угол между v и В прямой). Это ускорение изменяет лишь направление скорости, величина же скорости остается неизменной. Следовательно, и ускорение (72.1) будет постоянным по величине. При этих условиях заряженная частица движется равномерно по окружности, радиус которой определяется соотношением Подставив сюда значение (72.1) дляи решив получившееся уравнение относительно R, получим

Итак, в случае, когда заряженная частица движется в однородном магнитном поле, перпендикулярном к плоскости, в которой происходит движение, траектория частицы является окружностью. Радиус этой окружностизависит от скорости частицы, магнитной индукции поля и отношения заряда частицы к ее массе. Отношениеназывается удельным зарядом.

Найдем время Т, затрачиваемое частицей на один оборот. Для этого разделим длину окружности на скорость частицы v. В результате получим

Из (72.3) следует, что период обращения частицы не зависит от ее скорости, он определяется только удельным зарядом частицы и магнитной индукцией поля.

Выясним характер движения заряженной частицы в случае, когда ее скорость образует с направлением однородного магнитного поля угол а, отличный от прямого. Разложим вектор v на две составляющие; - перпендикулярную к В и- параллельную В (рис. 72.1). Модули этих составляющих равны

Магнитная сила имеет модуль

и лежит в плоскости, перпендикулярной к В. Создаваемое этой силой ускорение является для составляющей нормальным.

Составляющая магнитной силы в направлении В равна нулю; поэтому повлиять на величину эта сила не может. Таким образом, движение частицы можно представить как наложение двух движений: 1) перемещения вдоль направления В с постоянной скоростьюи 2) равномерного движения поокружности в плоскости, перпендикулярной к вектору В. Радиус окружности определяется формулой (72.2) с заменой v на .Траектория движения представляет собой винтовую линию, ось которой совпадает с направлением В (рис. 72.2). Шаг линии можно найти, умноживна определяемый формулой (72.3) период обращения Т:

Направление, в котором закручивается траектория, зависит от знака заряда частицы. Если заряд положителен, траектория закручивается против часовой стрелки. Траектория, по которой движется отрицательно заряженная частица, закручивается по часовой стрелке (предполагается, что мы смотрим на траекторию вдоль направления В; частица при этом летит от нас, если и на нас, если).

16. Движение заряженных частиц в электромагнитном поле. Применение электронных пучков в науке и технике: электронная и ионная оптика, электронный микроскоп. Ускорители заряженных частиц.

Введём понятие элементарной частицы как объекта , механическое состояние которого полностью описывается заданием трех координат и трех компонент скорости его движения как целого. Изучению взаимодействий элементарных частиц с э.м. полем предпошлем некоторые общие соображения, относящиеся к понятию “частицы” в релятивистской механике.

Взаимодействие частиц друг с другом описывается (и описывалось до теории относительности) с помощью понятия силового поля. Каждая частица создает вокруг себя поле. На всякую другую частицу, находящуюся в этом поле, действует сила. Это касается как заряженных частиц, взаимодействующих с э.м. полем, так и не имеющих заряда массивных частиц, находящихся в гравитационном поле.

В классической механике поле являлось лишь некоторым способом описания взаимодействия частиц как физического явления . Положение вещей существенным образом меняется в теории относительности из-за конечной скорости распространения поля. Силы, действующие в данный момент на частицу, определяются их расположением в предшествующее время . Изменение положения одной из частиц отражается на других частицах лишь спустя некоторый промежуток времени. Поле становится физической реальностью, через посредство которой осуществляется взаимодействие частиц . Мы не можем говорить о непосредственном взаимодействии частиц, находящихся на расстоянии друг от друга. Взаимодействие может происходить в каждый момент лишь между соседними точками пространства (близкодействие). Поэтому можно говорить о взаимодействии частицы с полем и о последующем взаимодействии поля с другой частицей .

В классической механике можно ввести понятие абсолютно твердого тела , которое ни при каких условиях не может быть деформировано. Однако в невозможности существования абсолютно твердого тела легко убедиться с помощью следующего рассуждения, основанного на теории относительности.

Пусть твердое тело внешним воздействием в какой-нибудь одной его точке приводится в движение. Если бы тело было абсолютно твердым , то все его точки должны были бы прийти в движение одновременно с той, которая подверглась воздействию. (В противном случае тело должно было бы деформироваться). Теория относительности, однако, делает это невозможным, так как воздействие от данной точки передается к остальным с конечной скоростью, а потому все точки тела не могут одновременно начать двигаться. Поэтому под абсолютно твердым телом следует подразумевать тело, все размеры которого остаются неизменными в системе отсчета, где оно покоится.

Из сказанного выше вытекают определенные выводы, относящиеся к рассмотрению элементарных частиц . Очевидно, что в релятивистской механике частицам, которые мы рассматриваем как элементарные , нельзя приписывать конечных размеров. Другими словами, в пределах строгой специальной теории относительности элементарные частицы не должны иметь конечных размеров и, следовательно, должны рассматриваться как точечные.

17. Собственные электромагнитные колебания. Дифференциальное уравнение собственных электромагнитных колебаний и его решение.

Электромагнитными колебаниями называются периодические изменения напряженности Е ииндукции В.

Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.

В неограниченном пространстве или в системах с потерями энергии(диссипативных) возможны собственные Э. к. с непрерывным спектром частот.

18. Затухающие электромагнитные колебания. Дифференциальное уравнение затухающих электромагнитных колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.

лектромагнитные затухающие колебания возникают в электромагнитной колебательной систему , называемой LCR – контур (Рисунок 3.3).

Рисунок 3.3.

Дифференциальное уравнение получим с помощью второго закона Кирхгофа для замкнутого LCR – контура: сумма падений напряжения на активном сопротивлении (R) и конденсаторе (С) равна ЭДС индукции, развиваемой в цепи контура:

коэффициент затухания

Это дифференциальное уравнение, описывающее колебания заряда конденсатора. Введем обозначения:

Величину β также как и в случае механических колебаний называют коэффициентом затухания , а ω 0 – собственной циклической частотой колебаний.

С введенными обозначениями уравнение (3.45) примет вид

(3.47)

Уравнение (3.47) полностью совпадает с дифференциальным уравнением гармонического осциллятора с вязким трением (формула (4.19) из раздела "Физические основы механики"). Решение этого уравнения описывает затухающие колебания вида

q(t) = q 0 e -bt cos(wt + j) (3.48)

где q 0 – начальный заряд конденсатора, ω = – циклическая частота колебаний, φ – начальная фаза колебаний. На рис. 3.17 показан вид функции q(t). Такой же вид имеет и зависимость напряжения на конденсаторе от времени, так как U C = q/C.

ДЕКРЕМЕНТ ЗАТУХАНИЯ

(от лат. decrementum - уменьшение, убыль) (логарифмический декремент затухания) - количественнаяхарактеристика быстроты затухания колебаний в линейной системе; представляет собой натуральныйлогарифм отношения двух последующих максимальных отклонений колеблющейся величины в одну и ту жесторону. T. к. в линейной системе колеблющаяся величина изменяется по закону (где постоянная величина- коэф. затухания) и два последующих наиб. отклонения в одну сторону X 1 и X 2 (условно наз. "амплитудами" колебаний) разделены промежутком времени (условно наз. "периодом" колебаний), то, а Д. з..

Так, напр., для механич. колебат. системы, состоящей из массы т, удерживаемой в положении равновесияпружиной с коэф. упругости k и испытывающей трение силой F T , пропорциональной скорости v (F Т =-bv, гдеb - коэф. пропорциональности), Д. з.

При малом затухании . Аналогично для электрич. контура, состоящего изиндуктивностиL , активного сопротивления R и ёмкости С, Д. з.

.

При малом затухании .

Для нелинейных систем закон затухания колебаний отличен от закона , т. е. отношение двухпоследующих "амплитуд" (и логарифм этого отношения) не остаётся постоянным; поэтому Д. з. не имееттакого определ. смысла, как для систем линейных.

Добро́тность - параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Обозначается символом от англ. quality factor .

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.

19. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных электромагнитных колебаний и его решение. Резонанс.

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Чтобы в реальной колебательной системе осуществлять незатухающие колебания, надо компенсировать каким-либо потери энергии. Такая компенсация возможна, если использовать какой-либо периодически действующего фактора X(t), который изменяется по гармоническому закону: При рассмотрении механических колебаний, то роль X(t) играет внешняя вынуждающая сила (1) С учетом (1) закон движения для пружинного маятника (формула (9) предыдущего раздела) запишется как Используя формулу для циклической частоты свободных незатухающих колебаний прижинного маятника и (10) предыдущего раздела, получим уравнение (2) При рассмотрении электрического колебательный контура роль X(t) играет подводимая к контуру внешняя соответсвующим образом периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение (3) Тогда дифференциальное уравнение колебаний заряда Q в простейшем контуре, используя (3), можно записать как Зная формулу циклической частоты свободных колебаний колебательного контура и формулу предыдущего раздела (11), придем к дифференциальному уравнению (4) Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями . Уравнения (2) и (4) приведем к линейному неоднородному дифференциальному уравнению (5) причем далее мы будем применять его решение для вынужденных колебаний в зависимости от конкретного случая (x 0 если механические колебания равно F 0 /m, в случае электромагнитных колебаний - U m /L). Решение уравнения (5) будет равно (как известно из курса дифференциальных уравнений) сумме общего решения (5) однородного уравнения (1) и частного решения неоднородного уравнения. Частное решение ищем в комплексной форме. Заменим правую часть уравнения (5) на комплексную переменную х 0 e iωt: (6) Частное решение данного уравнения будем искать в виде Подставляя выражение для s и его производных (и) в выражение (6), найдем (7) Поскольку это равенство должно быть верным для всех моментов времени, то время t из него должно исключаться. Значит η=ω. Учитывая это, из формулы (7) найдем величину s 0 и умножим ее числитель и знаменатель на (ω 0 2 - ω 2 - 2iδω) Это комплексное число представим в экспоненциальной форме: где (8) (9) Значит, решение уравнения (6) в комплексной форме будет иметь вид Его вещественная часть, которая является решением уравнения (5), равна (10) где А и φ определяются соответственно формулами (8) и (9). Следовательно, частное решение неоднородного уравнения (5) равно (11) Решение уравнения (5) есть сумма общего решения однородного уравнения (12) и частного решения уравнения (11). Слагаемое (12) играет значительную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, которое определяется равенством (8). Графически вынужденные колебания изображены на рис. 1. Значит, в установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими; амплитуда и фаза колебаний, которые определяются уравнениями (8) и (9), также зависят от ω .

Рис.1

Запишем выражения (10), (8) и (9) для электромагнитных колебаний, учитывая, что ω 0 2 = 1/(LC) и δ = R/(2L) : (13) Продифференцировав Q=Q m cos(ωt–α) по t, получим силу тока в контуре при установившихся колебаниях: (14) где (15) Уравнение (14) может быть записано как где φ = α – π/2 - сдвиг по фазе между током и приложенным напряжением (см. (3)). В соответствии с уравнением (13) (16) Из (16) следует, что ток отстает по фазе от напряжения (φ>0), если ωL>1/(ωС), и опережает напряжение (φ<0), если ωL<1/(ωС). Выражения (15) и (16) можно также вывести с помощью векторной диаграммы. Это будет осуществлено далее для переменных токов.

Резона́нс (фр. resonance , от лат. resono «откликаюсь») - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частотысобственных колебаний с частотой колебаний вынуждающей силы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с некоторой другой частотой, определяемой из параметров колебательной системы, таких как внутренняя (собственная) частота, коэффициент вязкости и т. п. Обычно резонансная частота не сильно отличается от собственной нормальной, но далеко не во всех случаях можно говорить об их совпадении.

20. Электромагнитные волны. Энергия электромагнитной волны. Плотность потока энергии. Вектор Умова-Пойнтинга. Интенсивность волны.

ЭЛЕКТРОМАГНИ́ТНЫЕ ВО́ЛНЫ, электромагнитные колебания, распространяющиеся в пространстве сконечной скоростью, зависящей от свойств среды. Электромагнитной волной называютраспространяющееся электромагнитное поле (см . ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ).

В однородном электрическом поле, сила, действующая на заряженную частицу, постоянна как по величине, так и по направлению. Поэтому движение такой частицы полностью аналогично движению тела в поле тяжести земли без учета сопротивления воздуха. Траектория частицы в этом случае является плоской, лежит в плоскости, содержащей векторы начальной скорости частицы и напряженности электрического поля

Потенциал электростатического поля. Общее выражение, связывающее потенциал с напряженностью.

Потенциал φ в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку. Потенциал поля, создаваемого точечным зарядом Q, равен

Потенциал - физическая величина, которая определяется работой по перемещению единичного положительного электрического заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, которую совершают внешние силы (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Единица потенциала - вольт (В): 1 В равен потенциалу такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В = 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная ранее единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Н м/(Кл м)=1 Дж/(Кл м)=1 В/м.

Из формул (3) и (4) следует, что если поле создается несколькими зарядами, то потенциал данного поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала.

E = - grad фи = - N фи.

Для установления связи между силовой характеристикой электрического поля - напряжённостью и его энергетической характеристикой - потенциалом рассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q E dl, эта же работа равна убыли потенциальной энергии заряда q: dA = - dWп = - q dфи, где d фи - изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: E dl = -d фи или в декартовой системе координат

Ex dx + Ey dy + Ez dz = -d фи

где Ex, Ey, Ez - проекции вектора напряженности на оси системы координат. Поскольку выражение представляет собой полный дифференциал, то для проекций вектора напряженности имеем

Стоящее в скобках выражение является градиентом потенциала фи.

Принцип суперпозиции как фундаментальное свойство полей. Общие выражения для напряженности и потенциала поля, создаваемого в точке с радиус-вектором системой точечных зарядов, находящихся в точках с координатами.(см п.4)

Если рассмотреть принцип суперпозиции в самом общем смысле, то согласно ему, сумма воздействия внешних сил, действующих на частицу, будет складываться из отдельных значений каждой из них. Данный принцип применяется к различным линейным системам, т.е. таким системам, поведение которых можно описать линейными соотношениями. Примером может послужить простая ситуация, когда линейная волна распространяется в какой-то определённой среде, в этом случае её свойства будут сохраняться даже под действием возмущений, возникающих из-за самой волны. Эти свойства определяются как конкретная сумма эффектов каждой из гармоничных составляющих.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

· Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

· Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

· Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

6 Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L

Так как работа сил электростатического поля по замкнутому контуру равна нулю (работа сил потенциального поля), следовательно циркуляция напряженности электростатического поля по замкнутому контуру равна нулю.

Потенциал поля. Работа любого электростатического поля при перемещении в нем заряженного тела из одной точки в другую также не зависит от формы траектории, как и работа однородного поля. На замкнутой траектории работа электростатического поля всегда равна нулю. Поля, обладающие таким свойством, называют потенциальными. Потенциальный характер, в частности, имеет электростатическое поле точечного заряда.
Работу потенциального поля можно выразить через изменение потенциальной энергии. Формула справедлива для любого электростатического поля.

7-11Если силовые линии однородного электрического поля напряженностью пронизывают некоторую площадку S, то поток вектора напряженности (раньше мы называли число силовых линий через площадку) будет определяться формулой:

где En – произведение вектора на нормаль к данной площадке (рис. 2.5).


Рис. 2.5

Полное число силовых линий, проходящих через поверхность S называется потоком вектора напряженности ФЕ через эту поверхность.

В векторной форме можно записать – скалярное произведение двух векторов, где вектор .

Таким образом, поток вектора есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным.

Рассмотрим примеры, изображенные на рисунках 2.6 и 2.7.



Рис. 2.6 Рис. 2.7

Для рисунка 2.6 – поверхность А1 окружает положительный заряд и поток здесь направлен наружу, т.е. Поверхность А2– окружает отрицательный заряд, здесь и направлен внутрь. Общий поток через поверхность А равен нулю.

Для рисунка 2.7 – поток будет не равен нулю, если суммарный заряд внутри поверхности не равен нулю. Для этой конфигурации поток через поверхность А отрицательный (подсчитайте число силовых линий).

Таким образом, поток вектора напряженности зависит от заряда. В этом смысл теоремы Остроградского-Гаусса.

Теорема Гаусса

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS. Произведение модуля вектора на площадь ΔS и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 1.3.1):

Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки ΔΦi поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 1.3.2):

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

где R – радиус сферы. Поток Φ через сферическую поверхность будет равен произведению E на площадь сферы 4πR2. Следовательно,

Окружим теперь точечный заряд произвольной замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R0 (рис. 1.3.3).

Рассмотрим конус с малым телесным углом ΔΩ при вершине. Этот конус выделит на сфере малую площадку ΔS0, а на поверхности S – площадку ΔS. Элементарные потоки ΔΦ0 и ΔΦ через эти площадки одинаковы. Действительно,

Аналогичным образом можно показать, что, если замкнутая поверхность S не охватывает точечного заряда q, то поток Φ = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φi электрических полей отдельных зарядов. Если заряд qi оказался внутри поверхности S, то он дает вклад в поток, равный если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R. Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l, закрытого с обоих торцов (рис. 1.3.4).

При r ≥ R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl, так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая r < R. В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен Φ = E 2πrl. Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда, т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

И графики к 7 – 11

1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

a. Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен

По теореме Гаусса

Следовательно

c. Проведем через точку В, находящуюся внутри заряженной сферической поверхности, сферу S радиусом г

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

(13.10)

а на его поверхности (r=R)

(13.11)

В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен

с другой стороны, в соответствии с теоремой Гаусса

По теореме Гаусса

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

(13.13)

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

12. Поле равномерно заряженной сферы .

Пусть электрическое поле создается зарядом Q , равномерно распределенным по поверхности сферы радиуса R (Рис. 190). Для вычисления потенциала поля в произвольной точке, находящейся на расстоянии r от центра сферы, необходимо вычислить работу, совершаемую полем при перемещении единичного положительного заряда от данной точки до бесконечности. Ранее мы доказали, что напряженность поля равномерно заряженной сферы вне ее эквивалентно полю точечного заряда, расположенного в центре сферы. Следовательно, вне сферы потенциал поля сферы будет совпадать с потенциалом поля точечного заряда

φ (r )=Q 4πε 0r . (1)

В частности, на поверхности сферы потенциал равен φ 0=Q 4πε 0R . Внутри сферы электростатическое поле отсутствует, поэтому работа по перемещению заряда из произвольной точки, находящейся внутри сферы, на ее поверхность равна нулю A = 0, поэтому и разность потенциалов между этими точками также равна нулю Δφ = -A = 0. Следовательно, все точки внутри сферы имеют один и тот же потенциал, совпадающий с потенциалом ее поверхности φ 0=Q 4πε 0R .

Итак, распределение потенциала поля равномерно заряженной сферы имеет вид (Рис. 191)

φ (r )=⎧⎩⎨Q 4πε 0R , npu r <RQ 4πε 0r , npu r >R . (2)

Обратите внимание, поле внутри сферы отсутствует, а потенциал отличен от нуля! Этот пример является яркой иллюстрацией, того, что потенциал определяется значением поля от данной точки до бесконечности.

Рассмотрим движение электрона между плоскопараллельными электродами с расстоянием d между ними.

Уравнение Лапласа, имеющее вид, после интегрирования сводится к уравнению

где U - разность потенциалов между электродами.

Уравнение движения электрона в прямоугольной системе координат разбивается на три уравнения:

В рассматриваемом случае магнитное поле отсутствует, а электрическое имеет одну компоненту Ey =E. Тогда система уравнений запишется как

Пусть в момент t = 0 электрон находится в точке начала координат и движется со скоростью v0, имеющей компоненты по осям х и у, а компонента скорости по z равна нулю. Тогда интегрирование приводит к уравнениям:

После повторного интегрирования первых двух уравнений получаем;

Константы интегрирования в обоих случаях равны нулю, поскольку в начальный момент х = у= 0 интегрирование третьего уравнения дает z=0.

Получим уравнение траектории электрона, подставив:

Видно, что движение происходит по параболе (кривая 1 на рис.2.1), обращенной выпуклостью вверх. Анализ показывает, что вершина этой параболы имеет координаты

Совершая движение по этой траектории, электрон возвращается к оси х в точке с координатой:

Если вектор напряженности поля Е направить в противоположную сторону (-у), то изменяется знак первого члена уравнения траектории

т.е. в данном случае электрон будет двигаться по траектории 2 (на рис.2.1). Это отрезок параболы, симметричный относительно начала координат параболе 1.

> Движение электрона в ускоряющем поле

И и ёНа рисунке изображено в виде силовых линий (линий напряженности) однородное электрическое поле между двумя электродами, например катодом и анодом диода.

Если разность потенциалов между электродами U, а расстояние между ними d, то напряженность поля

Для однородного поля величина Е является постоянной.

Пусть из электрода, имеющего более низкий потенциал, например из катода К, вылетает электрон с кинетической энергией W и начальной скоростью v 0 , направленной вдоль силовых линий поля. Поле ускоряет движение электрона. Иначе говоря, электрон притягивается к электроду с более высоким потенциалом. В данном случае поле называют ускоряющим.

Напряженность поля численно равна силе, действующей на единичный положительный заряд. Поэтому сила, действующая на электрон

F = еЕ.

Знак "минус" поставлен потому, что сила F направлена в сторону, противоположную вектору Е. Иногда этот знак не ставят.

Под действием постоянной силы F электрон получает ускорение а =F/т. Двигаясь прямолинейно, электрон приобретает наибольшую скорость v и кинетическую энергию W в конце своего пути, т.е. при ударе об электрод, к которому он летит. Таким образом, в ускоряющем поле кинетическая энергия электрона увеличивается за счет работы поля по перемещению электрона. В соответствии с законом сохранения энергии увеличение кинетической энергии электрона W-W равно работе поля, которая определяется произведением перемещаемого заряда е на пройденную им разность потенциалов U:

W - W 0 = mv 2 /2 - mv 0 2 /2 = еU. (4)

Если начальная скорость электрона равна нулю, то

W = mv 2 /2 = еU. (5)

т.е. кинетическая энергия электрона равна работе поля.

Формула (5) с некоторым приближением может применяться и в том случае, когда начальная скорость v 0 много меньше конечной скорости v, так как при этом

mv 0 2 /2 " mv 2 /2

Если условно принять заряд электрона за единицу количества электричества, то при U= 1 В энергия электрона принимается за единицу энергии, которую назвали электрон-вольтом (эВ). В большинстве случаев удобно выражать энергию электронов в электрон-вольтах, а не в джоулях.

Из формулы (5) определяется конечная скорость электрона

Подставляя сюда значения е и т, можно получить удобное выражение для скорости в метрах или километрах в секунду:

Таким образом, скорость электрона в ускоряющем поле зависит от пройденной разности потенциалов.

Начальную энергию электрона удобно выражать в электрон-вольтах, имея в виду равенство

т.е. считая, что эта энергия создана ускоряющим полем с разностью потенциалов U 0 .

Скорости электронов даже при небольшой разности потенциалов значительны. При U = 1 В скорость равна 600 км/с, а приU = 100 В - уже 6000 км/с.

Найдем время t пролета электрона между электродами, определив его с помощью средней скорости:

Средняя скорость равноускоренного движения равна полусумме начальной и конечной скоростей:

Если , то

Подставляя сюда значения конечной скорости, получим время пролета в секундах:

здесь расстояние d выражено в метрах, а если выразить его в миллиметрах, то

Например, время пролета электрона при d = 3 мм и U= 100 В

Вследствие неоднородности поля расчет времени пролета электрона в электронных приборах более сложен. Практически это время равно - с. Можно такое малое время пролета во многих случаях не учитывать. Но все же, из-за того что электроны имеют массу, они не могут мгновенно изменять свою скорость и мгновенно пролетать расстояние между электродами. На ультра - и сверхвысоких частотах (сотни и тысячи мегагерц) время пролета электрона становится соизмеримым с периодом колебаний. Например, при f=1000 МГц период Т= с. Прибор перестает быть безинерционным или малоинерционным. Иначе говоря, проявляется инерция электронов, которая практически не влияет на работу при низких и высоких частотах. На этих частотах период колебаний Т много больше времени пролета электрона и переменные напряжения на электродах за время пролета не успевают заметно измениться, т.е. можно считать, что пролет электрона совершается при постоянных напряжениях электродов.

Режим работы при постоянных напряжениях электродов называют статическим режимом. Когда напряжение хотя бы одного электрода изменяется так быстро, что законы статического режима применять нельзя, режим называют динамическим . Если же напряжения изменяются с невысокой частотой, так, что явления можно рассматривать приближенно с помощью законов статического режима, то режим называют квазистатическим.

Выражения для энергии, скорости и времени пролета остаются в силе для любого участка пути электрона. В этом случае величины W,v, t, d, U относятся только к данному участку.

Если на разных участках напряженность поля различна, то на отдельных участках электрон будет лететь с разным ускорением, а конечная скорость электрона определяется только конечной разностью потенциалов и начальной его скоростью. Из закона сохранения энергии вытекает, что конечная разность потенциалов U равна алгебраической сумме разностей потенциалов отдельных участков. Поэтому полное приращение кинетической энергии равно произведению еU.

Движение заряда в электрическом поле

Когда носитель электрического заряда оказывается в , на него неизбежно начинает действовать кулоновская сила. Это приводит к тому, что носитель заряда начинает перемещаться в пространстве, если, конечно, кулоновские силы не скомпенсированы другими, противодействующими силами. Рассмотрим случай, когда в электрическом поле оказался пробный заряд q совершенно свободный от действия других сил. Как только этот заряд окажется в зоне действия силовых линий электрического поля, то на него будет действовать сила в соответствии с .

Как известно, механическая сила является векторной величиной, а значит имеет и величину, и направление. Носитель заряда в электрическом поле начнет менять свое энергетическое состояние. Как это проявляется? Одноименные заряды отталкиваются, а разноименные притягиваются. Наш заряд в зависимости от знака начнет сближаться с противоположным ему знаком заряда, которое и образует электрическое поле. Легче всего это увидеть, посмотрев на напряженности поля. Согласно правилам они имеют направление от заряда +Q к заряду -Q , иначе говоря выходят из положительных зарядов (источника) и заходят в отрицательные заряды (источника).

Направление силы действия на пробный заряд q определить очень легко, если он положительный, то сила будет направлена по силовым линиям поля, а если отрицательный, то против силовых линий. Траектория движения будет зависеть от начальной скорости заряда, ее величины и направления. Действующая сила будет ускорять заряд, то есть его скорость по величине и направлению будет меняться в сторону действия кулоновской силы.

Движение заряда q в электрическом поле

На рисунке изображена примерная траектория движения заряда +q , имеющего некоторую начальную скорость V 0 . Если бы заряд имел противоположный знак, то траектория движения была бы зеркально отражена от оси X, и заряд бы двигался в сторону пластины (+). По оси Y можно изобразить шкалу потенциала, которая так же будет иметь полярность.

Спрашивается. Что это за шкала и как определить где больший, а где меньший потенциал? Учитывая, что по определению и по действующим правилам силовые линии выходят из зарядов (+) и уходят в бесконечность, где потенциал равен нулю, то максимальный положительный потенциал будет в начале силовых линий от источника, а максимальный отрицательный потенциал там, где линии заходят в источник поля. Наш заряд +q , изображенный на рисунке выше будет двигаться от большего потенциала к меньшему, тем самым уменьшая потенциальную энергию поля, а точнее, преобразуя ее в кинетическую энергию. Если же в нашем случае был заряд -q , то для него потенциалы поменяли бы знак, арифметически, за счет умножения на -1, он всё также бы двигался в сторону уменьшения энергии поля.

Разность потенциалов - энергетическая характеристика

Любой заряд при своем движении в электрическом поле имеет начальную позицию, точку в пространстве поля, которая характеризуется φ начальное , и конечную точку, которая также имеет свой потенциал φ конечное . Разность между двумя этими величинами потенциалов называется Δφ - разность потенциалов, а иначе еще называют поля.

Следует различать электрическое напряжение поля в электростатическом потенциальном поле, где нет вихрей, и падение электрического напряжения в электротехнических цепях, а также напряжение, которое является ЭДС (электродвижущая сила). Для того, чтобы не было путаницы, обычно для электрического поля употребляют выражение «разность потенциалов» , для электрических цепей - «падение напряжения» , а для источников тока - «ЭДС источника» . Когда отсутствует понимание различия таких определений, становится трудно разобраться в сути сложных явлений в мире электротехники, электроники и автоматики. Что же роднит все эти три такие похожие, но всё-таки различные понятия? Прежде всего общее здесь то, что все три характеризуют энергетическое состояние. Но далее, при ответе на вопрос «Энергетическое состояние чего?», идут различия. Разность потенциалов характеризует энергетику электрического потенциального поля, падение напряжения - для участка электрической цепи, а ЭДС источника - это энергетическая характеристика устройства создающего электрический ток. Общность при ответе на вопрос: «Что это?», а различия при ответе на вопрос «Где?». Всё познается в сравнении, поэтому необходимо отлично ориентироваться во всех трёх вышеуказанных понятиях.

Имеем некоторый путь пройденный зарядом q от точки A до точки B, от начального потенциала, к конечному, а разница между ними и есть разность потенциалов. О чем это нам говорит? Если Δφ=φ A -φ B (разность потенциалов), тогда чтобы узнать какую работу, которую совершил заряд проделавший путь, нам надо Δφ умножить на величину заряда q, причем надо учесть знак заряда.

Полученное значение является работой, которую совершает заряд при перемещении. Иначе говоря, потенциальная энергия поля преобразуется в кинетическую энергию заряда, а так как заряд, в случае движения в сторону противоположного ему знака уменьшает напряженность поля, то потенциальная энергия поля уменьшится.

В случае, если некоторые не кулоновские силы воздействуют на заряд и тем самым переместят его в сторону поля, где знак такой же как у заряда, то работа будет совершена с противоположным знаком, точнее сказать она будет затрачена извне и общее энергетическое состояние поля увеличится. В одном случае потенциальная энергия поля уменьшается, за счет того, что часть этой энергии переходит в кинетическую, а в другом случае, если действуют на заряд внешние механические силы против кулоновских сил - потенциальная энергия возрастает из внешнего источника. В первом случае заряд движется в сторону уменьшения своего энергетического состояния, а во втором случае он движется в сторону увеличения своего энергетического состояния. Соответственно работа совершатся может либо с положительным знаком, либо с отрицательным.

Энергия электрического поля

Предположим, что имеется некоторый объем пространства, которое «наполнено» , то есть есть источник поля и благодаря дальнодействию мы говорим, что это пространство наполнено полем. Разумеется, что в виде вещества нет никаких силовых линий поля, это воображаемые в уме представления, но в этой области пространства любой заряд будет реагировать проявлением кулоновской силы. Можно ли как-то характеризовать этот объем пространства энергетически? Так как электрическое поле является потенциальным, то можно говорить о его потенциальной энергии.

Предположим, что вышеозначенный объем пространства - это объем V внутри плоского конденсатора, а на обкладках конденсатора имеется заряд Q . Разность потенциалов между обкладками равна Δφ , тогда мы сможем вычислить потенциальную энергию электрического поля по следующей формуле:

Эта формула действительна при условии, что объем является физическим вакуумом, то есть там нет никаких физических частиц. Если же пространство объемом V будет заполнено веществом, тогда необходимо ε 0 (диэлектрическая постоянная) умножить на ε - диэлектрическая проницаемость среды (вещества), которым заполнен объем V .

Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электрон пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на y. Под действием силы поля, F=eE=ma частица движется ускоренно по вертикали, поэтому

Время движения частицы вдоль оси ох с постоянной скоростью . Тогда . А это есть уравнение параболы. Т.о. заряженная частица движется в электрическом поле по параболе.

3. Частица в магнитном поле Рассмотрим движение заряженной частицы в магнитном поле напряженностью Н. Силовые линии поля изображены точками и направлены перпендикулярно к плоскости рисунка (к нам).

Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклоняет частицу вверх от ее первоначального направления движения (направление движения электрона противоположно направлению тока)

Согласно формуле Ампера сила, отклоняющая частицу на любом участке траектории равна

Ток , где t-время, за которое заряд e проходит по участку l. Поэтому

Учитывая, что , получим

Сила F называется лоренцевой силой. Направления F, v и H взаимно перпендикулярны. Направление F можно определить по правилу левой руки.

Будучи перпендикулярна скорости , лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следует, что:

1. Работа силы Лоренца равна нулю, т.е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы)

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы.

Радиус r этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Т.о. радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

Период обращения частицы T равен отношению длины окружности S к скорости частицы v:6

Учитывая выражение для r, получим Следовательно, период обращения частицы в магнитном поле не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом к ее скорости , то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью . Очевидно, что результирующая траектория частицы окажется винтовой линией

.

4. Электромагнитные счетчики скорости крови

Принцип действия электромагнитного счетчика основан на движении электрических зарядов в магнитном поле. В крови имеется значительное количество электрических зарядов в виде ионов.

Предположим, что некоторое количество однозарядных ионов движется внутри артерии со скоростью . Если артерию поместить между полюсами магнита, ионы будут двигаться в магнитном поле.

Для направлений и B, показанных на рис.1., магнитная сила действующая на положительно заряженные ионы направлена вверх, а сила , действующая на отрицательно заряженные ионы, направлена вниз. Под влиянием этих сил ионы движутся к противоположным стенкам артерии. Эта поляризация артериальных ионов создает поле E(рис.2), эквивалентное однородному полю плоского конденсатора. Тогда разность потенциалов в артерии U(диаметр которой d) связан с Е формулой