Презентация на тему: " Графическое изображение электрического поля. Силовые линии напряженности электрического поля." — Транскрипт. Электризация тел. Электрические силы. Электрический заряд. Закон сохранения заряда. Закон Кулона. Электрическое поле. Напря

Окна и двери

1. Электрические поля изображаются силовыми линиями или линиями напряженности.

Линии напряженности – это линии по касательным, к которым располагаются вектора сил, действующих на пробный положительный заряд или вектора напряженности.

Свойства линий напряженности:

А) Выходят из положительных зарядов, а входят в отрицательные заряды.

Б) Нигде не пересекаются.

В) Густота линий говорит об интенсивности электрического поля.

Изображение электрических полей

А) Электрическое поле изолированного положительного заряда

Б) Электрическое поле изолированного отрицательного заряда

В) Электрическое поле системы двух разноименных зарядов

Г) Электрическое поле системы двух одноименных зарядов

Д) Электрическое поле плоского конденсатора. Однородное электрическое поле

Вопрос

Работа электрического поля по перемещению заряда.

A AB = F ЭЛ ∙ AB ∙ cosα = F ЭЛ ∙ AC

A ACB = A AC + A CB = F ЭЛ ∙ AC ∙ cos0 + F ЭЛ ∙ CB ∙ cos90 О = F ЭЛ ∙ AC

1. Работа электрического поля не зависит от формы траектории заряда, определяется его начальным положением и конечным.

2. Работа по перемещению заряда по замкнутому контуру равна 0.

Поля с такими свойствами называются потенциальными, значит электрическое поле – потенциально. И можно ввести характеристику потенциал.

Потенциал – это энергетическая характеристика электрического поля, она численно равна потенциальной энергии единичного положительного заряда данной точки поля.

Потенциал.

[φ]си = 1 = 1В (вольт)

Родственные потенциалу величины, разность потенциалов и напряжение.

φ 2 – φ 1 = Δφ = = φ

Потенциал точечного заряда. r

Взаимосвязь разности потенциалов или напряженности электрического поля.

Δφ = E ∙d U = E ∙ d

Вопрос

Проводники и диэлектрики в электрическом поле.

1. Проводники вне электрического поля

Проводник в электрическом поле

Внутри проводника электрическое поле отсутствует (электростатическая защита от электрических полей)

2.Различают 2 вида диэлектриков с жесткими и мягкими диполями.

Диэлектрик с жесткими диполями вне электрического поля.

Диполь – это поляризованная молекула.

В электрическом поле

Диэлектрик с мягкими диполями вне электрического поля.

Диэлектрик с мягкими диполями в электрическом поле

Вывод: диэлектрик ослабляет внешнее электрическое поле в ε раз.

Вопрос

Электрическая емкость проводника. Конденсаторы.

Электрическая емкость – это характеристика проводника. Она численно равна заряду, который нужно сообщить проводнику, что бы его потенциал возрос на 1 единицу.

[C]си = 1Ф (Фарада)

1мкФ = 10 -6 Ф

1пФ = 10 -12 Ф

Электрическая емкость зависит от формы, размеров проводника, вида диэлектрика, но не зависит от материала проводника.

1. Особый интерес вызывают системы двух проводников разделенных диэлектриком – конденсаторы.

Конденсаторы - это накопители электрической энергии.

Виды конденсаторов:

1. По форме пластин

А) Плоский конденсатор

Б) Лейденская банка

В) Сферические

2. По виду диэлектрика

А) Воздушный

Б) Стеклянный

В) Бумажный

3. По емкости

А) Постоянный

Б) Переменный

Вопрос

Соединение конденсатора в батарее.

Последовательное Параллельное

W ЭЛ =

Вопрос

Электрический ток. Направление тока. Величины, характеризующие ток.

1. Электрический ток – это направленное движение заряженных частиц.

Различают истинное и техническое направление тока.

Истинное направление – это направление движения тех заряженных частиц, которое создают ток.

Техническое направление тока (которое отмечается в схемах) – это направление движения положительно заряженных частиц.

3. Скорость тока

Различают:

Скорость направленного движения частиц (электронов)

Под скоростью тока понимают скорость распространение электрического поля в цепи

4. Величины, характеризующие ток:

1. Сила тока – это величина численно равная заряду, проходящему через поперечное сечение проводника в единицу времени.

2. Плотность тока j

Вопрос

Условия возникновения тока. Внешний и внутренний участки цепи. ЭДС. Закон Ома для полной цепи (1 форма).

1) Замкнутая цепь

2) Источник тока, который поддерживает электрическое поле в цепи.

2. Электрическую цепь делят на 2 части

1) Внутренний участок цепи (источник тока)

2) Внешний участок цепи (потребитель)

Источник тока характеризуется особой величиной - электродвижущей силой (ЭДС), которая родственна напряжению.

ЭДС – это величина, численно равная работе сторонних сил по перемещению единичного заряда на внутреннем участке цепи.

Закон Ома для полной цепи

Закон Ома для полной цепи:

ЭДС источника тока равна сумме напряжения на внешнем и на внутреннем участках цепи.

Взаимодействия зарядов передаются с помощью особого материального посредника, называемого электрическим полем . Взаимодействие двух зарядов q 1 и q 2 можно объяснить так: в пространстве вокруг заряда q 1 существует особая форма материи – электрическое поле, которое и действует непосредственно на заряд q 2 .Действие электрического поля на помещенный в него заряд является основным его свойством .

Электрическое поле, созданное неподвижными зарядами, называется электростатическим .

Напряженность электростатического поля

Напряженность поля - векторная ха­рак­те­ристика электрического поля. Напря­жен­ность поля в некоторой точке определяется отно­шением силы, действующей со стороны поля на положительный заряд q 0 , помещенный в данную точку поля, к величине этого заряда :


, [

].



(1)

Напряженность электрического поля точечного заряда










. (2)

Принцип суперпозиции полей

Напряженность поля, создаваемая в какой-либо точке пространства системой зарядов, равна векторной сумме напряженностей, создаваемых в этой точке каждым из зарядов:


(3)


Напряженность поля непрерывно распределенного заряда:

. (4)

Характеристики распределенных зарядов


- линейная плотность зарядов;


- поверхностная плотность зарядов;


- объемная плотность зарядов;

Графическое изображение электрических полей. Силовые линии

Силовые линии это непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности электрического поля.

Свойства силовых линий

    силовые линии всегда начинаются на положительных зарядах и заканчиваются на отрицательных;

    силовые линии начинаются и заканчиваются либо на зарядах, либо уходят в бесконечность;

    густота силовых линий (число силовых линий, проходящих через единицу площади) пропор­ци­о­нальна напряженности электрического поля;

    силовые линии не пересекаются.

Примеры электрических полей

22. Работа сил электростатического поля по перемещению зарядов. Циркуляция вектора напряженности. Потенци­альный характер электростатического поля.


(1)


. (2)

С учетом того, что



. (3)

Работа по перемещению заряда не зависит от формы траектории и пройденного зарядом пути, а зависит только от начального и конечного положения заряда. Такое поле называется потенциальным , а кулоновская сила – консерва­тив­ной .

При движении заряда по замкнутой траектории (r 1 = r 2) работа равна нулю


. (4)

Интеграл

называется циркуляцией вектора напряженности .

В частном случае при перемещении заряда q 0 из точки 1 с произвольным радиусом r 1 = r в бесконечность (

)


. (5)

1. Электрический заряд. Закон Кулона.

2. Электрическое поле. Напряженность, потенциал, разность потенциалов. Графическое изображение электрических полей.

3. Проводники и диэлектрики, относительная диэлектрическая проницаемость.

4. Ток, сила тока, плотность тока. Тепловое действие тока.

5. Магнитное поле, магнитная индукция. Силовые линии. Действие магнитного поля на проводники и заряды. Действие магнитного поля на контур с током. Магнитная проницаемость.

6. Электромагнитная индукция. Токи Фуко. Самоиндукция.

7. Конденсатор и катушка индуктивности. Энергии электрического и магнитного полей.

8. Основные понятия и формулы.

9. Задачи.

Характеристики электрического и магнитного полей, которые создаются биологическими системами или действуют на них, являются источником информации о состоянии организма.

10.1. Электрический заряд. Закон Кулона

Заряд тела складывается из зарядов его электронов и протонов, собственные заряды которых одинаковы по величине и противоположны по знаку (е = 1,67х10 -19 Кл).

Тела, в которых количество электронов и протонов одинаково, называются незаряженными.

Если по какой-то причине равенство между числом электронов и протонов нарушено, тело называется заряженным и его электрический заряд определяется формулой

Закон Кулона

Взаимодействие неподвижных точечных зарядов подчиняется закону Кулона и называется кулоновским или электростатическим.

Сила взаимодействия двух точечных неподвижных зарядов прямо пропорциональна произведению их величин и обратно пропорциональна квадрату расстояния между ними:


10.2. Электрическое поле. Напряженность, потенциал, разность потенциалов. Графическое изображение электрических полей

Электрическое поле есть форма материи, посредством которой осуществляется взаимодействие между электрическими зарядами.

Электрическое поле создается заряженными телами. Силовой характеристикой электрического поля является векторная величина, называемая напряженностью поля.

Напряженность электрического поля (Е) в некоторой точке пространства равна силе, действующей на единичный точечный заряд, помещенный в эту точку:


Потенциал, разность потенциалов

При перемещении заряда из одной точки поля в другую силы поля совершают работу, которая не зависит от формы пути. Для вычисления этой работы используют специальную физическую величину, называемую потенциалом.


Графическое изображение электрических полей

Для графического изображения электрического поля используют силовые линии или эквипотенциальные поверхности (обычно что-то одно). Силовая линия - линия, касательные к которой совпадают с направлением вектора напряженности в соответствующих точках.

Густота силовых линий пропорциональна напряженности поля. Эквипотенциальная поверхность - поверхность, все точки которой имеют одинаковый потенциал.

Эти поверхности проводят так, чтобы разность потенциалов между соседними поверхностями была постоянна.


Рис. 10.1. Силовые линии и эквипотенциальные поверхности заряженных сфер

Силовые линии перпендикулярны эквипотенциальным поверхностям.

На рисунке 10.1 изображены силовые линии и эквипотенциальные поверхности для полей заряженных сфер.

На рисунке 10.2, а изображены силовые линии и эквипотенциальные поверхности для поля, созданного двумя пластинами, заряды которых одинаковы по величине и противоположны по знаку. На рисунке 10.2, б изображены силовые линии и эквипотенциальные поверхности для электрического поля Земли вблизи стоящего человека.


Рис. 10.2. Электрическое поле двух пластин (а); электрическое поле Земли вблизи стоящего человека (б).

10.3. Проводники и диэлектрики, относительная диэлектрическая проницаемость

Вещества, в которых имеются свободные заряды, называются проводниками.

Основными типами проводников являются металлы, растворы электролитов и плазма. В металлах свободными зарядами являются отделившиеся от атома электроны внешней оболочки. В электролитах свободными зарядами являются ионы растворенного вещества. В плазме свободными зарядами являются электроны, которые отделяются от атомов при высоких температурах, и положительные ионы.

Вещества, в которых нет свободных зарядов, называются диэлектриками.

Диэлектриками являются все газы при низких температурах, смолы, резина, пластмасса и многие другие неметаллы. Молекулы диэлектрика нейтральны, но центры положительного и отрицательного зарядов не совпадают. Такие молекулы называются полярными и изображаются в виде диполей. На рисунке 10.3 показана структура молекулы воды (Н 2 О) и соответствующий ей диполь.


Рис. 10.3. Молекула воды и ее изображение в виде диполя

Если в электростатическом поле находится проводник (заряженный или незаряженный - безразлично), то свободные заряды перераспределяются таким образом, что созданное ими электрическое поле компенсирует внешнее поле. Поэтому напряженность электрического поля внутри проводника равна нулю.

Если в электростатическом поле находится диэлектрик, то его полярные молекулы «стремятся» расположиться вдоль поля. Это приводит к уменьшению поля внутри диэлектрика.

Диэлектрическая проницаемость (ε) - безразмерная скалярная величина, показывающая, во сколько раз напряженность электрического поля в диэлектрике уменьшается по сравнению с полем в вакууме:

10.4. Ток, сила тока, плотность тока. Тепловое действие тока

Электрическим током называется упорядоченное движение свободных зарядов в веществе. За направление тока принимается направление движения положительных зарядов.

Электрический ток возникает в проводнике, между концами которого поддерживается электрическое напряжение (U).

Количественно электрический ток характеризуют с помощью специальной величины - силы тока.

Силой тока в проводнике называется скалярная величина, показывающая, какой заряд проходит через поперечное сечение проводника за 1 с.

Для того чтобы показать распределение тока в проводниках сложной формы, используют плотность тока (j).

Плотность тока в проводнике равна отношению силы тока к площади сечения проводника:

Здесь R - характеристика проводника, называемая сопротивлением. Единица измерения - Ом.

Величина сопротивления проводника зависит от его материала, формы и размеров. Для цилиндрического проводника сопротивление прямо пропорционально его длине (l) и обратно пропорционально площади поперечного сечения (S):

Коэффициент пропорциональности ρ называется удельным электрическим сопротивлением материала проводника; его размерность Омм.

Протекание тока по проводнику сопровождается выделением теплоты Q. Количество теплоты, выделившейся в проводнике за время t, вычисляют по формулам


Тепловое действие тока в некоторой точке проводника характеризуется удельной тепловой мощностью q.

Удельная тепловая мощность - количество теплоты, выделяющейся в единице объема проводника за единицу времени.

Чтобы найти эту величину, нужно вычислить или измерить количество теплоты dQ, выделившейся в небольшой окрестности точки, а затем поделить его на время и объем окрестности:


где ρ - удельное сопротивление проводника.

10.5. Магнитное поле, магнитная индукция. Силовые линии. Магнитная проницаемость

Магнитное поле есть форма материи, посредством которой осуществляется взаимодействие движущихся электрических зарядов.

В микромире магнитные поля создаются отдельными движущимися заряженными частицами. При хаотическом движении заряженных частиц в веществе их магнитные поля компенсируют друг друга и магнитное поле в макромире не возникает. Если движение частиц в веществе каким-либо образом упорядочить, то магнитное поле появляется и в макромире. Например, магнитное поле возникает вокруг любого проводника с током. Особым упорядоченным вращением электронов в некоторых веществах объясняются и свойства постоянных магнитов.

Силовой характеристикой магнитного поля является вектор магнитной индукции B. Единица магнитной индукции - тесла (Тл).

Силовые линии

Магнитное поле графически изображается с помощью линий магнитной индукции (магнитные силовые линии). Касательные к силовым линиям показывают направление вектора В в соответствующих точках. Густота линий пропорциональна модулю вектора В. В отличие от силовых линий электростатического поля, линии магнитной индукции замкнуты (рис. 10.4).


Рис. 10.4. Магнитные силовые линии

Действие магнитного поля на проводники и заряды

Зная величину магнитной индукции (В) в данном месте, можно вычислить силу, действующую со стороны магнитного поля на проводник с током или движущийся заряд.

а) Сила Ампера, действующая на прямолинейный участок проводника с током, перпендикулярна как направлению В, так и проводнику с током (рис. 10.5, а):

где I - сила тока; l - длина проводника; α - угол между направлением тока и вектором В.

б) Сила Лоренца, действующая на движущийся заряд, перпендикулярна как направлению В, так и направлению скорости заряда (рис. 10.5, б):

где q - величина заряда; v - его скорость; α - угол между направлением v и В.


Рис. 10.5. Силы Ампера (а) и Лоренца (б).

Магнитная проницаемость

Подобно тому как диэлектрик, помещенный во внешнее электрическое поле, поляризуется и создает собственное электрическое поле, любое вещество, помещенное во внешнее магнитное поле, намагничивается и создает собственное магнитное поле. Поэтому величина магнитной индукции внутри вещества (В) отличается от величины магнитной индукции в вакууме (В 0). Магнитная индукция в веществе выражается через магнитную индукцию поля в вакууме по формуле

где μ - магнитная проницаемость вещества. Для вакуума μ = 1

Магнитная проницаемость вещества (μ) - безразмерная величина, показывающая, во сколько раз индукция магнитного поля в веществе изменяется по сравнению с индукцией магнитного поля в вакууме.

По способности к намагничиванию вещества делятся на три группы:

1) диамагнетики, у которых μ < 1 (вода, стекло и др.);

2) парамагнетики, у которых μ > 1 (воздух, эбонит и др);

3) ферромагнетики, у которых μ >>1 (никель, железо и др.).

У диа- и парамагнетиков отличие магнитной проницаемости от единицы весьма незначительно (~0,0001). Намагниченность этих веществ при удалении из магнитного поля исчезает.

У ферромагнетиков магнитная проницаемость может достигать нескольких тысяч (например, у железа μ = 5 000-10 000). При удалении из магнитного поля намагниченность ферромагнетиков частично сохраняется. Ферромагнетики используют для изготовления постоянных магнитов.

10.6. Электромагнитная индукция. Токи Фуко. Самоиндукция

В замкнутом проводящем контуре, помещенном в магнитное поле, при определенных условиях возникает электрический ток. Для описания этого явления используют специальную физическую величину - магнитный поток. Магнитный поток через контур площади S, нормаль которого (n) образует с направлением поля угол α (рис. 10.6), вычисляется по формуле


Рис. 10.6. Магнитный поток через контур

Магнитный поток - это скалярная величина; единица измерения вебер [Вб].

По закону Фарадея при всяком изменении магнитного потока, пронизывающего контур, в нем возникает электродвижущая сила Е (э.д.с. индукции), которая равна скорости изменения магнитного потока, пронизывающего контур:

Э.д.с. индукции возникает в контуре, который находится в переменном магнитном поле или вращается в постоянном магнитном поле. В первом случае изменение потока обусловлено изменением магнитной индукции (В), а во втором - изменением угла α. Вращение проволочной рамки между полюсами магнита используется для производства электроэнергии.

Токи Фуко

В некоторых случаях электромагнитная индукция проявляется и при отсутствии специально созданного контура. Если в переменном магнитном поле находится проводящее тело, то по всему его объему возникают вихревые токи, протекание которых сопровождается выделением теплоты. Поясним механизм их возникновения на примере проводящего диска, расположенного в меняющемся магнитном поле. Диск можно рассматривать как «набор» вложенных друг в друга замкнутых контуров. На рис. 10.7 вложенные контуры - это кольцевые сегменты между


Рис. 10.7. Токи Фуко в проводящем диске, расположенном в однородном переменном магнитном поле. Направление токов соответствует нарастанию В

окружностями. При изменении магнитного поля меняется и магнитный поток. Поэтому в каждом контуре индуцируется ток, изображенный стрелкой. Совокупность всех таких токов называют токами Фуко.

В технике с токами Фуко приходится бороться (потери энергии). Однако в медицине эти токи используют для прогревания тканей.

Самоиндукция

Явление электромагнитной индукции можно наблюдать и в том случае, когда внешнее магнитное поле отсутствует. Например, если по замкнутому контуру пропустить переменный ток, то он создаст переменное магнитное поле, которое, в свою очередь, создаст переменный магнитный поток через контур, и в нем возникнет э.д.с.

Самоиндукцией называется возникновение электродвижущей силы в контуре, по которому протекает переменный ток.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения силы тока в контуре:

Знак «-» означает, что э.д.с самоиндукции препятствует изменению силы тока в контуре. Коэффициент пропорциональности L является характеристикой контура, называемой индуктивностью. Единица индуктивности - генри (Гн).

10.7. Конденсатор и катушка индуктивности. Энергии электрического и магнитного полей

В радиотехнике для создания электрических и магнитных полей, сосредоточенных в малой области пространства, используют специальные устройства - конденсаторы и катушки индуктивности.

Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, на которых размещены одинаковые по величине и противоположные по знаку заряды. Эти проводники называются пластинами конденсатора.

Зарядом конденсатора называют заряд положительной пластины.

Пластины имеют одинаковую форму и располагаются на расстоянии, очень малом по сравнению с их размерами. В этом случае электрическое поле конденсатора практически полностью сосредоточено в пространстве между пластинами.

Электрической емкостью конденсатора называется отношение его заряда к разности потенциалов между пластинами:

Единица емкости - фарад (Ф = Кл/В).

Плоский конденсатор состоит из двух параллельных пластин площади S, разделенных слоем диэлектрика толщины d с диэлектрической проницаемостью ε. Расстояние между пластинами много меньше их радиусов. Емкость такого конденсатора вычисляется по формуле:

Катушка индуктивности представляет собой проволочную катушку с ферромагнитным сердечником (для усиления магнитного поля). Диаметр катушки много меньше ее длины. В этом случае магнитное поле, создаваемое протекающим током, практически полностью сосредоточено внутри катушки. Отношение магнитного потока (Ф) к силе тока (I) является характеристикой катушки, называемой ее индуктивностью (L):

Единица индуктивности - генри (Гн = Вб/А).

Энергии электрического и магнитного полей

Электрическое и магнитное поля материальны и вследствие этого обладают энергией.

Энергия электрического поля заряженного конденсатора:


где I - сила тока в катушке; L - ее индуктивность.

10.8. Основные понятия и формулы

Продолжение таблицы

Продолжение таблицы

Продолжение таблицы

Окончание таблицы


10.9. Задачи

1. С какой силой притягиваются заряды в 1 Кл, расположенные на расстоянии 1 м друг от друга?

Решение

По формуле (10.1) найдем: F = 9*10 9* 1*1/1 = 9х10 9 Н. Ответ: F = 9х10 9 Н.

2. С какой силой ядро атома железа (порядковый номер 26) притягивает электрон на внутренней оболочке радиусом r = 1х10 -12 м?

Решение

Заряд ядра q = +26е. Силу притяжения найдем по формуле (10.1). Ответ: F = 0,006 Н.

3. Оценить электрический заряд Земли (он отрицателен), если напряженность электрического поля у поверхности Земли Е = 130 В/м. Радиус Земли 6400 км.

Решение

Напряженность поля вблизи Земли это напряженность поля заряженной сферы:

E = k*q|/R 2 , где k = 1/4πε 0 = 910 9 Нм 2 /Кл 2 .

Отсюда найдем |q| = ER 2 /k = ,"es":["Mr3i-Ift3N4","xVMlGRcp54U","xVMlGRcp54U","llJIXgwvXT8","xVMlGRcp54U"],"pt":["h17Qd1rP4I4","ffoy7Nsq0eA","KhxYH26ngW8"],"it":["LV6lCigjLgQ","WE5uH9FazHk"],"cs":["WdiWcJKoN0U"]}