Сопротивление равно формула с площадью. Использование конвертера «Электрическое сопротивление

Окна и двери

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления - резисторов - не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах - мобильных телефонах, смартфонах, планшетах и компьютерах - число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами - конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Определение

Электрическое сопротивление - это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость - о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей - волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию - резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R - сопротивление, Ом;

U - разность электрических потенциалов (напряжение) на концах проводника, В;

I - сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление - закон Джоуля-Ленца:

Q = I 2 ∙ R ∙ t

Q - количество выделенной теплоты за промежуток времени t, Дж;

I - сила тока, А;

R - сопротивление, Ом;

t - время протекания тока, сек.

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока - электронов проводимости - принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь - по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении - во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии - его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры - выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа - «открыт-закрыт» - и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда - положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах - стабисторах - для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой - возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера . Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей - электролитов - определяется наличием и концентрацией ионов различных знаков - атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов - анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине - от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа - «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы - это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели - магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы: их назначение, применение и измерение

Резистор - электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R 1 + R 2 + … + R n

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R 1 ∙ R 2 ∙ … ∙ R n /(R 1 + R 2 + … + R n)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом - символ К, для мегаом - символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Многие слышали о таком понятии, встречаемом и широко используемом в сфере электричества, как электрическое сопротивление. Но не все знают, какова же природа его. В чём заключается суть, и что вообще оно собой представляет, от чего зависит. Предлагаю в этой статье разобраться, что же такое сопротивление тока. И так, под электрическим сопротивлением подразумевают две вещи. В одном понимании это физическая величина, в другом же, это электрический компонент, деталь, элемент.

Теперь про то, в чём именно заключается суть сопротивления тока. А начнём мы с основы, строения атома, его кристаллической решетки, и движения электричества внутри электрического проводника. Напомню, что атом является мельчайшей частицей вещества. Он устроен следующим образом: в центре находится так называемое ядро, состоящее из более мелких частиц, протонов и нейтронов. Вокруг этого атомного ядра с огромной скоростью вращаются еще одни частицы, называемые электронами (по размерам они гораздо меньше ядра).

Ядро атома имеет положительный электрический заряд (плюс), а электроны, соответственно, отрицательный заряд (минус). Любое вещество представлено множеством атомов, которые имеют свою определенную структурированность, именуемая таким понятием как кристаллическая решётка (если говорить о твердом состоянии вещества). Но перед тем как перейти к сути сопротивления тока стоит ещё добавить, что то пространство, по которому носятся электроны называется орбитой электрона (орбиталями). У разных веществ количество орбит может быть разным, и располагаются они одна выше другой (как луковица).

На самой отдалённой электронной орбите сила притяжения электрона к ядру атома минимально, что способствует легкому отрыву электрона от неё и перехода его к соседнему атому. В этом заключается суть движения электрических зарядов внутри вещества (проводника тока). Когда мы подключаем к проводнику источник тока, прилаживая к его концам определенную разность потенциалов (электрическое напряжение), мы заставляем электроны упорядоченно двигаться с одного полюса источника энергии к другому. Возникает электрический ток зарядов внутри проводника, его кристаллической решетки.

А теперь уж можно перейти к вопросу о электрическом сопротивлении тока, его сути. И так, при прохождении электрических зарядов внутри проводника электроном не приходится двигаться по прямой траектории, их движения скорей напоминает перескоки с одного атома на другой. Естественно, что при таком движении будет расходоваться некоторая энергия (на преодоление препятствий). Кроме этого стоит учесть, что атомы не стоят на месте, они имеют свое внутреннее хаотическое движение внутри кристаллической решетки вещества. А чем больше это движение (зависящае также от температуры, чем она выше, тем движение атомов интенсивнее), тем большее препятствие возникает перед перемещением зарядов. Именно это препятствие движению тока и называется электрическим сопротивлением.

Также существует такое понятие как сверхпроводимость. Это когда электрическое сопротивление тока приравнивается к нулю. Электрический ток бежит по проводнику без потерь. Так сказать идеальный проводник. Этого эффекта можно достичь если определённые вещества довести до температуры абсолютного нуля (273 градуса по Цельсию). А как известно из физики, при сверхнизких температурах движения атома внутри кристаллической решетки вещества практически прекращается. На пути движения электронов, электрического тока заряженных частиц нет препятствий, что и дает эффект сверхпроводимости.

Электрическое сопротивление зависит от таких фундаментальных электрических величин как сила тока и напряжение. Все эти три электрические характеристики объединены общим законом, который называется закон Ома (сила тока равна напряжение деленное на сопротивление). Зависимость этой троицы следующая: чем больше сопротивление электрической цепи, тем меньше будет сила тока, при равном напряжении питания. Чем больше напряжение мы прилаживаем к цепи, тем больше сила тока будет протекать, при равном сопротивлении цепи. То есть, чем больше сопротивление, тем меньше сила тока, и наоборот. У сопротивления тока имеется своя единица измерения, это Ом (1 килоом равен 1000 ом). 1 Ом равен 1 Вольт поделить на 1 Ампер.


Это мы разобрали суть электрического сопротивления тока, как физической величины. Но очень часто говоря о сопротивлении подразумевается конкретная материальная вещь, деталь, функциональный элемент. То есть, обычный электрический резистор называют сопротивлением, поскольку прямое назначение этой детали заключается именно в образовании электрического сопротивления в определенной части цепи. Электрическое сопротивление тока ещё бывает активным и реактивным. Активное сопротивление существует у всех резистивных элементах (проводники имеющие нагревательную способность). Реактивным сопротивлением обладают различные катушки и емкости. Но про это уже в другой теме.

P.S. У новичка может возникнуть такой закономерный вопрос. Зачем нужно специально ставить сопротивление в электрическую цепь, ведь его суть заключается в препятствии движению тока? Нужно, даже необходимо, Так же, как и наличие у машины тормозов. Когда возникает необходимость снижению скорости или остановки без тормозов просто не обойтись. Примерно также, и в сфере электрики, электроники. В некоторых местах электрической цепи нужно наличие именно меньшего напряжения и тока, чем на входе источника питания, что и делает резистор (сопротивление).

Сразу оговоримся, что речь пойдет об измерении сопротивления электрическому току. Что оно собой представляет, и в чем измеряется сопротивление?

Три кита

Откуда вообще берется такое сопротивление? Все материалы в природе, с точки зрения электропроводности, делятся на 3 категории – изоляторы, полупроводники, и проводники. Первые не проводят электрический ток вообще (например, стекло, пластик, воздух), вторые – пропускают ток лишь в определенных условиях (кремний, германий), и на их основе построена вся современная электроника. Но интересуют нас последние – всем знакомые проводники. Обыкновенная медная проволока, провод, которым подключен ваш компьютер в розетку – все это проводники.

Как же проводники могут оказывать сопротивление электрическому току? Дело в том, что идеального проводника в природе не существует. В любом, даже самом "чистом" проводнике всегда есть некоторая часть примесей, которые оказывают сопротивление электронам, движущимся в теле проводника. Столкновение электронов с этими примесями вызывает нагрев, а иногда (если плотность потока слишком велика, т.е. слишком большой ток) и разрушение проводника (на этом основано действие нагревательных элементов и плавких предохранителей).

Немного математики

В чем измеряется сопротивление проводника, или вернее сказать – электрической цепи? Единица измерения этой величины, названа в честь физика Георга Симона Ома. Да, того самого Ома, чей Закон мы все учили в школе. В технической литературе обозначается буквой «омега». Само сопротивление в расчетах записывают как "R" (U – напряжение, I – ток, P – мощность и т.д.). Что же значит сия величина? Рассмотрим пример. Согласно закону, того же самого Ома, если наш проводник имеет сопротивление 1 Ом, приложив к его концам напряжение в 220 вольт, мы получим ток (ток = напряжение делённое на сопротивление) 220 ампер. Умножив ток на напряжение, мы узнаем мощность: 220 вольт *220 ампер = 48400 ватт, или 48 киловатт. Это ОЧЕНЬ большая мощность, которую не выдержит никакая бытовая проводка. По сути, такой ток будет током короткого замыкания. Это показывает, насколько важно точно знать сопротивление цепи, перед подачей напряжения! К счастью, узнать его не так сложно, и, даже не обязательно проводить какие-то расчеты. Есть специальные измерительные приборы – омметры, которые показывают величину сопротивления постоянному току. Их разновидность мегомметры – предназначены для измерения больших величин сопротивлений, и используются в основном для проверки изоляции. Сейчас встретить омметры как отдельные приборы сложно. В большинстве своем они входят в состав комбинированых приборов – авометров, или мультиметров, которые продаются в каждом ларьке китайский товаров.

Итак, удачных вам измерений!

Настала очередь узнать, что такое сопротивление. Представьте себе теперь уже обычную кристаллическую решетку. Так вот… Чем плотнее будут кристаллы расположены друг к другу, тем больше в них будет задерживаться зарядов. Значит, говоря простым языком - тем больше сопротивление металла. Кстати, сопротивление любого обычного металла можно на время увеличить, нагрев его. «Почему?», - спросите. Да потому, что при нагревании атомы металла начинают усиленно колебаться возле своего закрепленного связями положения. Поэтому движущиеся заряды будут чаще сталкиваться с атомами, а значит чаще и больше задерживаться в узлах кристаллической решетки. На рис.1 приведена наглядная схема-сборка, так сказать для «непосвященных», где сразу видно, как измерить напряжение на сопротивлении. Точно таким же образом можно измерить напряжение и на лампочке. Кстати, если, как видно из рисунка, наша батарея имеет напряжение, допустим, 15В(Вольт), а сопротивление таково, что на нем «оседает» 10В, то оставшиеся 5В придутся на лампочку.

Так выглядит закон Ома для замкнутой цепи.

Если не вдаваться в подробности, то этот закон говорит о том, что напряжение источника питания равно сумме падений напряжений на всех его участках. Т.е. в нашем случае, 15В = 10В + 5В. Но… если все же немножко вникнуть в подробности, то нужно знать, что то, что мы называли напряжением батареи, есть не что иное как ее значение при подключенном потребител е(в нашем случае - это лампочка + сопротивление). Если лампочку с сопротивлением отсоединить и измерить значение напряжения на батарее, то оно окажется несколько больше 15В. Это будет напряжение холостого хода и «обзывается» оно ЭДС батареи - электродвижущая сила. В действительности схема будет работать как показано на рис.2. В реальности батарею можно представить как некую другую батарею с напряжением, допустим, 16В, которая имеет свое некоторое внутреннее сопротивление Rвн. Значение этого сопротивления очень мало и обусловлено технологическими особеностями изготовления. Из рисунка видно, что при подключеной нагрузке часть напряжения батареи «осядет» на ее внутреннем сопротивлении и на ее выходе будет уже не 16В, а 15В, т.е. 1В «поглотится» ее внутренним сопротивлением. И здесь также сработает закон Ома для замкнутой цепи. Сумма напряжений на всех участках цепи окажется равной ЭДС батареи. 16В = 1В + 10В + 5В. Единицей измерения сопротивления является величина, называемая Ом. Названа она так в честь немецкого физикаГеорга Симона Ом, который этими работами и занимался. 1Ом равен электрическому сопротивлению проводника(им может, например, и лампочка быть) между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер. Для определения сопротивления лампы необходимо замерить на ней напряжение и измерить ток в цепи (см рис.5). А затем полученное значение напряжения разделить на значение тока (R=U/I). Сопротивления в электрических цепях могут соединяться последовательно (конец первого с началом второго - в данном случае их можно обозначить произвольно) и параллельно (начало с началом, конец с концом - и в данном случае их можно обозначить произвольно). Рассмотрим оба случая на примере лампочек - ведь их нити накала состоят их вольфрама, т.е. представляют из себя сопротивления. Случай последовательного соединения показан на рис.3.

Получилась всем известная (а, значит, будем считать и понятная- гирлянда). При таком соединении ток I будет всюду одинаковый независимого от того, что будут ли это одинаковые лампы на одно и то же напряжение или на разные. Надо сразу оговориться, что одинаковыми считаюся лампы, на которых:

  1. указаны одно и тоже напряжение и ток(подобно лампочкам от карманного фонаря);
  2. указаны одно и тоже напряжение и мощность(подобно лампам освещения).

Напряжение U истотчника питания в этом случае «раскидается» по всем лампам, т.е. U = U1 + U2 +U3. При этом, если лампы одинаковые - на всех них напряжение будет одинаковым. Если лампы не одинаковые, то в зависимости от сопротивления каждой конкретной лампы. В первом случае напряжение на каждой лампе можно легко вычислить, разделив напряжение источника на общее количество ламп. Во втором случае надо покопаться в вычислениях. Все это мы рассмотрим в задачах этого раздела. Итак, мы выяснили, что при последовательном соединении проводников(в данном случае - ламп) напряжение U на концах всей цепи равно сумме напряжений последовательно включенных проводников(ламп) - U = U1 + U2 +U3. По закону Омадля участка цепи: U1 = I*R1, U2 = I*R2, U3 = I*R3,U = I*R где R1 - сопротивление нити первой лампы(проводника), R2 - второй и R3 - третьей, R - полное сопротивление всех ламп. Заменив в выражении «U = U1 + U2 +U» значение U на I*R, U1 на I*R1, U2 на I*R2, U3 на I*R3, получим I*R = I*(R1+R2+R3). Отсюда R = R1+R2+R3.Вывод: при последовательном соединении проводников их общее сопротивление равно сумме сопротивлений всех проводников. Сделаем вывод: последовательное включение применяется для нескольких потребителей(например, ламп новогодней гирлянды) с напряжением питания меньшим напряжения источника..

Случай параллельного соединения проводников показан на рис.4.

При параллельном соединении проводников их начала и концы имеют общие точки подключения к источнику. При этом напряжения на всех лампах(проводниках) одинаково независимо от того, какая из них и на какое напряжение рассчитана, так они напрямую подключены к источнику. Естественно, если лампа на меньшее напряжение, чем источник напряжения - она перегорит. А вот ток I будет равен сумме токов во всех лампах, т.е. I = I1 + I2 + I3. И лампы могут быть разной мощности - каждая будет брать тот ток, на который рассчитана. Это можно понять, если вместо источника представить розетку с напряжением 220В, а вместо ламп - подключенные к ней, например, утюг, настольная лампа и зарядныое устройство от телефона. Сопротивление каждого прибора в такой цепи определяется делением его напряжения на ток, который оно потребляет… опять-таки по закону Ома для участка цепи, т.е.

Сразу изложим тот факт, что есть величина, обратная сопротивлению и называется она - проводимость. Обозначается она Y. В системе СИ обозначается как См (Сименс). Обратная сопротивлению означает, что

Не вдаваясь в математические выводы, сразу скажем, что при параллельном соединении проводников(будь то лампы, утюги, микроволновки или телевизоры) величина, обратная общему сопротивлению, равна сумме величин, обратных сопротивлениям всех параллельно включенных проводников, т.е.

Учитывая, что

Иногда в задачах пишут Y = Y1 + Y2 + Y3. Это одно и то же. Есть также более удобная формула для нахождения общего сопротивления двух параллельно включенных сопротивлений. Выглядит она так:

Сделаем вывод: параллельный способ включения применяется для подключения ламп освещения и бытовых электроприборов к электрической сети.

Как мы выяснили, столкновения свободных электронов в проводниках с атомами кристаллической решетки тормозят их поступательное движение… Это противодействие направленному движению свободных электронов, т.е. постоянному току, составляет физическую сущность сопротивления проводника. Аналогичен механизм сопротивления постоянному току в электролитах и газах. Проводящие свойства материала определяют его объемное удельное сопротивление ρv, равное сопротивлению между противоположными сторонами куба с ребром 1м, изготовленного из данного материала. Величина обратная объемному удельному сопротивлению, называется объемной удельной проводимостью и равна γ = 1/ρv. Единицей объемного сопротивления служит 1Ом*м, объемной удельной проводимости - 1См/м. Сопротивление проводника постоянному току зависит от температуры. В общем случае наблюдается достаточно сложная зависимость. Но при изменениях температуры в относительно узких пределах (примерно 200°С) ее можно выразить формулой:

где R2 и R1 - сопротивления соответственно при температурах Т1 и Т2; α - температурный коэффициент сопротивления, равный относительному изменению сопротивления при изменении температуры на 1°С.

Важные понятия

Электротехническое устройство, обладающее сопротивлением и применяемое для ограничения тока, называется резистором. Регулируемый резистор (т.е. имеется возможность изменять его сопротивление) называется реостатом.

Резистивными элементами называются идеализированные модели резисторов и любых других электротехнических устройств или их частей, оказывающих сопротивление постоянному току независимо от физической природы этого явления. Они применяются при составлении схем замещения цепей и расчетах их режимов. При идеализации пренебрегают токами через изолирующие покрытия резисторов, каркасы проволочных реостатов и т.п.

Линейный резистивный элемент является схемой замещения любой части электротехнического устройства, в которой ток пропорционален напряжению. Его параметром служит сопротивление R = const. R = const означает, что значение сопротивления неизменно (const значит постоянна).
Если зависимость тока от напряжения нелинейна, то схема замещения содержит нелинейный резистивный элемент, который задается нелинейной ВАХ (вольт-амперной характеристикой) I(U) - читается как «И от У». На рис.5 приведены вольт-амперные характеристики линейного (линия а) и нелинейного (линия б) резистивных элементов, а также их обозначения на схмах замещения.

Тема: Электромагнитные явления

Урок: Электрическое сопротивление проводника. Единица сопротивления

Начнем с того, что расскажем, каким образом пришли к такой физической величине, как электрическое сопротивление. При изучении начал электростатики уже шла речь о том, что различные вещества имеют различные свойства проводимости, т. е. пропускания свободных заряженных частиц: металлы имеют хорошую проводимость, поэтому их называют проводниками, дерево и пластики - крайне плохую, поэтому их называют непроводниками (диэлектриками). Объясняются такие свойства особенностями молекулярного строения вещества.

Первые эксперименты по изучению свойств проводимости веществ проводились несколькими учеными, но в историю вошли опыты немецкого ученого Георга Ома (1789-1854) (рис. 1).

Опыты Ома заключались в следующем. Он использовал источник тока, прибор, который мог регистрировать силу тока, и различные проводники. Подключая в собранную электрическую схему различные проводники, он убедился в общей тенденции: при увеличении напряжения в цепи сила тока тоже увеличивалась. Кроме этого, Ом пронаблюдал очень важное явление: при подключении различных проводников зависимость нарастания силы тока при увеличении напряжения проявляла себя по-разному. Графически такие зависимости можно изобразить, как на рисунке 2.

Рис. 2.

На графике по оси абсцисс отложено напряжение, по оси ординат - сила тока. В системе координат отложено два графика, которые демонстрируют, что в различных цепях сила тока может возрастать с различной скоростью по мере увеличения напряжения.

Вследствие проведенных экспериментов Георг Ом делает вывод о том, что различные проводники обладают различными свойствами проводимости. Из-за этого было введено такое понятие, как электрическое сопротивление.

Определение. Физическая величина, характеризующая свойство проводника влиять на протекающий по нему электрический ток, называется электрическим сопротивлением .

Обозначение : R.

Единица измерения : Ом.

В результате упомянутых экспериментов было выяснено, что взаимосвязь между напряжением и силой тока в цепи зависит не только от вещества проводника, но и от его размеров, о чем пойдет речь в отдельном уроке.

Обсудим более подробно возникновение такого понятия, как электрическое сопротивление. На сегодняшний день его природа достаточно хорошо объяснена. В процессе движения свободных электронов они постоянно взаимодействуют с ионами, которые входят в строение кристаллической решетки. Таким образом, замедление движения электронов в веществе из-за столкновений с узлами кристаллической решетки (атомами) обусловливает проявление электрического сопротивления.

Кроме электрического сопротивления вводится еще связанная с ним величина - электрическая проводимость, которая взаимообратна к сопротивлению.

Опишем зависимости между величинами, которые мы ввели на нескольких последних уроках. Нам уже известно, что при увеличении напряжения растет и сила тока в цепи, т. е. они пропорциональны:

С другой стороны, при увеличении сопротивления проводника наблюдается уменьшение силы тока, т. е. они обратно пропорциональны:

Эксперименты показали, что эти две зависимости приводят к следующей формуле:

Следовательно, из этого можно получить, каким образом выражается 1 Ом:

Определение. 1 Ом - такое сопротивление, при котором на концах проводника напряжение 1 В, а сила тока на нем при этом 1 А.

Сопротивление 1 Ом очень маленькое, поэтому, как правило, на практике используются проводники с гораздо большим сопротивлением 1 кОм, 1 Мом и т. д.

В завершение можно сделать вывод о том, что сила тока, напряжение и сопротивление - это взаимосвязанные величины, которые влияют друг на друга. Подробно об этом мы поговорим на следующем уроке.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
  2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.

Дополнительные р екомендованные ссылки на ресурсы сети Интернет

  1. Школа для электрика ().
  2. Электротехника ().

Домашнее задание

  1. Стр. 99: вопросы № 1-4, упражнение № 18. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  2. Если напряжение на резисторе - 8 В, сила тока равна 0,2 А. При каком напряжении сила тока в резисторе будет равна 0,3 А?
  3. Электрическую лампочку подключили к сети 220 В. Каково сопротивление лампочки, если при замкнутом ключе амперметр, включенный в цепь, показывает 0,25 А?
  4. Подготовьте доклад о биографии жизни и научных открытиях ученых, положивших начало изучению законов постоянного тока.