Селекция животных: методы. Селекция растений и животных

Окна и двери

Селекция (от лат. selectio-выбор, отбор) – это наука о методах создания новых сортов растений и пород животных. По Н. И. Вавилову, селекция – это эволюция, направляемая волей человека. Для успешной селекционной работы учитывают:

1) исходное сортовое и видовое разнообразие растений и животных – объектов селекционной работы,

2) мутации и роль среды в проявлении и развитии изучаемых признаков,

3) закономерности наследования при гибридизации,

4) формы искусственного отбора (массовый и индивидуальный).

На разработку новых методов селекционной работы большое влияние оказала генетика – теоретическая база селекции. Селекционная работа в нашей стране проводится в специальных хозяйствах, на опытных станциях, в селекционных центрах, в племенных совхозах. Обычно породу или сорт выводят для районов с определенными климатическими условиями, в которых их генотип проявится в наилучшей форме.

Порода, сорт, штамм – это популяции организмов, полученных в результате селекции. Они характеризуются сходными наследственными особенностями и определенными внешними признаками, наследственно закрепленной продуктивностью. Например, молочные породы крупного рогатого скота отличаются величиной удоя, процентом жирности и содержанием белка в молоке. Но все их ценные свойства выявляются лишь при хорошем содержании, кормлении, а также в определенных природных условиях.

Совершенствование существующих форм животных, растений и полезных микроорганизмов невозможно без знания исходного материала, без изучения его происхождения и эволюции. Этим целям отвечают работы Н. И. Вавилова по установлению центров происхождения культурных растений в очагах древнейшего земледелия, созданию их коллекции и использованию в качестве исходного материала для выведения новых сортов. Он выделил восемь таких центров:

Индийский – родина риса, сахарного тростника, цитрусовых;

Среднеазиатский – родина гороха, бобов, мягкой пшеницы;

Китайский – хлебных злаков, бобовых;

Средиземноморский – капусты, клевера;

Абиссинский – кофе, ячменя;

Переднеазиатский – пшеницы, ржи, плодовых культур, дыни;

Южномексиканский – хлопчатника, кукурузы, томатов, тыквы, фасоли;

Южноамериканский – родина картофеля, хинного дерева.

Эти центры особенно изобилуют многообразием видов. Н. И. Вавилов со своими сотрудниками собрал из этих мест мировую коллекцию растений, обладающих большим генотипическим разнообразием. Эта коллекция и теперь служит богатым исходным материалом для скрещивания и выведения ценных сортов, т.е.. для селекционной работы. При районировании культурных растений и разведении домашних животных учитывают закономерности, установленные Вавиловым (закон гомологических рядов).

Таблица Центры происхождения культурных растений (по Н. И. Вавилову) (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Название центра Географическое положение Родина культурных растений
Южноазиатский тропический Индия, Индокитай, Южный Китай, о-ва Юго-Восточной Азии Рис, сахарный тростник, огурец, баклажан, черный перец, цитрусовые и др. (50% культурных растений)
Восточноазиатский Центральный и Восточный Китай, Япония, Корея, Тайвань Соя, просо, гречиха, плодовые и овощные культуры – слива, вишня, редька и др. (20% культурных растений)
Юго-западно-азиатский Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия Пшеница, рожь, бобовые культуры, лен, конопля, репа, морковь, чеснок, виноград, абрикос, груша и др. (14% культурных растений)
Средиземноморский Страны по берегам Средиземного моря Капуста, сахарная свекла, маслины, клевер, чечевица и другие кормовые травы (11% культурных растений)
Абиссинский Абиссинское нагорье Африки Твердая пшеница, ячмень, кофе, сорго, бананы
Центрально-американский Южная Мексика Кукуруза, длинноволокнистый хлопчатник, какао, тыква, табак
Андийский (Южноамериканский) Южная Америка вдоль западного побережья Картофель, ананас, кокаиновый куст, хинное дерево

Селекция микроорганизмов. Продукты биосинтеза одноклеточных организмов с каждым годом все более широко применяют в различных отраслях народного хозяйства, где используется ферментативная деятельность грибов и бактерий: в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. В связи с этим развивается промышленная микробиология и селекционная работа по выведению новых штаммов микроорганизмов с повышенной продуктивностью. Такие штаммы имеют большое значение для производства кормового белка, ферментных и витаминных кормовых препаратов, используемых в животноводстве.

В пивоваренной промышленности в настоящее время зерновой солод заменяют амилазами микроорганизмов, при этом вкусовые качества пива сохраняются. Применение ферментных препаратов в виноделии позволяет ускорить созревание и улучшить качество вин. Ферменты микроорганизмов широко используют в медицине и фармацевтической промышленности. Плесневые и лучистые грибы, измененные методами селекции, вырабатывают в сотни раз больше антибиотиков по сравнению с исходными формами. Микроорганизмы применяют в селекции и для производства бактериальных удобрений, аминокислот, витаминов, стимуляторов роста и микробиологических средств защиты растений от вредителей и болезней.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Введение

Селекция (от лат. -- выбор, отбор) -- это наука о путях и методах создания новых и улучшения уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для практики признаками и свойствами.

Задачи селекции вытекают из ее определения -- это выведение новых и совершенствование уже существующих сортов растений, пород животных и штаммов микроорганизмов. Сортом, породой и штаммом называют устойчивую группу (популяцию) живых организмов, искусственно созданную человеком и имеющую определенные наследственные особенности. Все особи внутри породы, сорта и штамма имеют сходные, наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на факторы внешней среды. Основными направлениями селекции являются:

Высокая урожайность сортов растений, плодовитость и продуктивность пород животных; качество продукции (например, вкус, внешний вид, лежкость плодов и овощей, химический состав зерна -- содержание белка, клейковины, незаменимых аминокислот и т. д.);

Физиологические свойства (скороспелость, засухоустойчивость, зимостойкость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям);

Интенсивный путь развития (у растений -- отзывчивость на удобрения, полив, а у животных -- «оплата» корма и т. п.).

1.Теоретические основы селекции

В последние годы особое значение приобретает селекция ряда насекомых и микроорганизмов, используемых с целью биологической борьбы с вредителями и возбудителями болезней культурных растений.

Селекция должна учитывать также и потребности рынка сбыта сельскохозяйственной продукции, удовлетворения конкретных отраслей промышленного производства. Например, для выпечки высококачественного хлеба с эластичным мякишем и хрустящей корочкой необходимы сильные (стекловидные) сорта мягкой пшеницы, с большим содержанием белка и упругой клейковины. Для изготовления высших сортов печенья нужны хорошие мучнистые сорта мягкой пшеницы, а макаронные изделия, рожки, вермишель, лапша, вырабатываются из твердой пшеницы.

Ярким примером селекции с учетом потребностей рынка служит пушное звероводство. При выращивании таких ценных зверьков, как норка, выдра, лиса, отбираются животные с генотипом, соответствующим постоянно меняющейся моде в отношении окраски и оттенков меха.

В целом развитие селекции должно быть основано на законах генетики как науки о наследственности и изменчивости, поскольку свойства живых организмов определяются их генотипом и подвержены наследственной и модификационной изменчивости.

Теоретической основой селекции является генетика. Именно генетика прокладывает пути эффективного управления наследственностью и изменчивостью организмов. Вместе с тем селекция опирается и на достижения других наук: систематики и географии растений и животных, цитологии, эмбриологии, биологии индивидуального развития, молекулярной биологии, физиологии и биохимии. Бурное развитие этих направлений естествознания открывает совершенно новые перспективы. Уже на сегодняшний день генетика вышла на уровень целенаправленного конструирования организмов с нужными признаками и свойствами.

Генетике принадлежит определяющая роль в решении практически всех селекционных задач. Она помогает рационально, на основе законов наследственности и изменчивости, планировать селекционный процесс с учетом особенностей наследования каждого конкретного признака. Достижения генетики, закон гомологических рядов наследственной изменчивости, применение тестов для ранней диагностики селекционной перспективности исходного материала, разработка разнообразных методов экспериментального мутагенеза и отдаленной гибридизации в сочетании с полиплоидизацией, поиск методов управления процессами рекомбинации и эффективного отбора наиболее ценных генотипов с нужным комплексом признаков и свойств дали возможность расширить источники исходного материала для селекции. Кроме того, широкое использование в последние годы методов биотехнологии, культуры клеток и тканей позволили значительно ускорить селекционный процесс и поставить его на качественно новую основу. Этот далеко не полный перечень вклада генетики в селекцию дает представление о том, что современная селекция немыслима без использования достижений генетики.

Успех работы селекционера в значительной мере зависит от правильности выбора исходного материала (видов, сортов, пород) для селекции, изучения его происхождения и эволюции, использования в селекционном процессе организмов с ценными признаками и свойствами. Поиск нужных форм ведется с учетом всего мирового генофонда в определенной последовательности. Прежде всего, используются местные формы с нужными признаками и свойствами, затем применяются методы интродукции и акклиматизации, т. е. привлекаются формы, произрастающие в других странах или в других климатических зонах и, наконец, методы экспериментального мутагенеза и генетической инженерии.

С целью изучения многообразия и географического распространения культурных растений Н. И. Вавилов с 1924 г. и до конца 30-х гг. организовал 180 экспедиций по самым труднодоступным и зачастую опасным районам земного шара. В результате этих экспедиций Н. И. Вавилов изучил мировые растительные ресурсы и установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Кроме того, была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала 300 тыс. образцов), которые ежегодно размножаются в кол лекциях Всероссийского института растениеводства имени Н. И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.

На основании изучения собранного материала Вавилов выделил 7 центров происхождения культурных растений (Приложение 1). Центры происхождения важнейших культурных растений связаны с древними очагами цивилизации и местом первичного возделывания и селекции растений. Подобные очаги одомашнивания (центры происхождения) выявлены и у домашних животных.

2 .Значение селекции

Цели и задачи селекции как науки обусловлены уровнем агротехники и зоотехники, уровнем индустриализации растениеводства и животноводства. Например, в условиях дефицита пресной воды уже выведены сорта ячменя, которые дают удовлетворительные урожаи при орошении морской водой. Выведены породы кур, не снижающие продуктивности в условиях большой скученности животных на птицефабриках. Для России очень важно создание сортов, продуктивных в условиях мороза без снега при ясной погоде, поздних заморозков и т. д.

Одним из важнейших достижений человека на заре его становления и развития было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных и возделывания растений. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У культурных форм растений и животных сильно развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур давать более 300 яиц в год лишена биологического смысла, поскольку такое количество яиц курица не сможет высиживать. Продуктивность всех культурных растения также значительно выше, чем у родственных диких видов, но вместе с тем они хуже адаптируются к постоянно меняющимся условиям среды и не имеют средств защиты от поедания (горьких или ядовитых веществ, шипов, колючек и т. п.). Поэтому в естественных условиях культурные, т. е. одомашненные формы существовать не могут.

Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости: и расширяло его спектр. При этом одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более смирный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у растений и животных определенных качеств, удовлетворяющих человека. Опыт многих поколений людей позволил создать методы и правила отбора и сформировать селекцию как науку.

Процесс одомашнивания новых видов растений и животных для удовлетворения потребностей человека продолжается и в наше время. Например, для получения модной и высококачественной пушнины в нынешнем столетии создана новая отрасль животноводства -- пушное звероводство.

культурный растени е селекция

3.Селекция растений, методы

В отличие от селекции микроорганизмов селекция растений не оперирует миллионами и миллиардами особей и скорость их размножения измеряется не минутами и часами, а месяцами и годами. Однако по сравнению с селекцией животных, где число потомков единично, селекция растений находится в более выгодном положении. Кроме того, различаются и методические подходы к селекции само- и перекрестноопыляющихся растений, размножающихся вегетативным и половым путем, одно- и многолетних растений и т.д.

Основными методами селекции растений являются отбор и гибридизация. Для отбора необходимо наличие гетерогенности, т. е. различий, разнообразия в используемой группе особей. В противном случае отбор не имеет смысла, он будет неэффективен, Поэтому сначала осуществляется гибридизация, а затем после появления расщепления -- отбор.

В случае, если селекционеру не хватает естественного разнообразия признаков, существующего генофонда, он использует искусственный мутагенез (получает генные, хромосомные или геномные мутации -- полиплоиды), для манипуляций с отдельными генами -- генетическую инженерию, а для ускорения селекционного процесса -- клеточную. Однако классическими методами селекции были и остаются гибридизация и отбор.

Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор -- это выделение целой группы особей, обладающих ценными признаками. Чаще он используется при работе с перекрестноопыляемыми растениями. В этом случае сорт не является гомозиготным. Это сорт-популяция, обладающий сложной гетерозиготностью по многим генам, что обеспечивает ему пластичность в сложных условиях среды и возможность проявления гетерозисного эффекта. Основным достоинством метода является то, что он позволяет сравнительно быстро и без больших затрат сил улучшать местные сорта, а недостатком -- то, что не может контролироваться наследственная обусловленность отбираемых признаков, в силу чего часто неустойчивы результаты отбора.

Скрещивание, при котором родительские формы отличаются только по одной паре альтернативных признаков, называется моногибридным. Мендель до скрещивания разных форм гороха проводил их самоопыление. При скрещивании белоцветковых горохов с такими же белоцветковыми он получал во всех последующих поколениях только белоцветковые. Аналогичная ситуация наблюдалась и в случае пурпурноцветковых. При скрещивании же Горохов, имеющих пурпурные цветки, с белоцветковыми растениями все гибриды первого поколения Р1 имели пурпурные цветки, но при их самоопылении среди гибридов второго поколения Р2 кроме пурпурноцветковых растений (три части) появлялись и белоцветковые (одна часть).

Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным.

Проводя скрещивание гомозиготных родительских форм, имеющих желтые семена с гладкой поверхностью и зеленые семена с морщинистой, Мендель получил все растения с желтыми гладкими семенами и сделал вывод, что эти признаки являются доминантными. Во втором поколении после самоопыления гибридов Р1 он наблюдал следующее расщепление: 315 желтых гладких, 101 желтых морщинистых, 108 зеленых гладких и 32 зеленых морщинистых. Используя другие гомозиготные родительские формы (желтые морщинистые и зеленые гладкие), Мендель получил аналогичные результаты и в первом, и во втором поколениях гибридов, т. е. расщепление во втором поколении в отношении 9: 3: 3: 1.

При индивидуальном отборе получают потомство от каждого растения отдельно при обязательном контроле наследования интересующих признаков. Он применяется у самоопылителей (пшеница, ячмень). Результатом индивидуального отбора является увеличение числа гомозигот. Это связано с тем, что при самоопылении гомозигот будут образовываться только гомозиготы, а половина потомков самоопыленных гетерозигот также будут гомозиготами. При индивидуальном отборе формируются чистые линии. Чистые линии -- это группа особей, являющаяся потомками одной гомозиготной самоопыленной особи. Они обладают максимальной степенью гомозиготности. Однако абсолютно гомозиготных особей практически не бывает, так как непрерывно происходит мутационный процесс, нарушающий гомозиготность. Кроме того, даже самые строгие самоопылители иногда могут переопыляться перекрестно. Это повышает их приспособленность к условиям и выживаемость, поскольку народу с искусственным отбором на все органические формы действует и естественный.

Естественный отбор играет важную роль в селекции, так как при проведении искусственного отбора селекционер не может избежать того, чтобы селекционный материал не подвергался воздействию условий внешней среды. Более того, селекционерами часто привлекается и естественный отбор для отбора форм, наиболее приспособленных к условиям произрастания -- влажности, температуры, устойчивости к естественным вредителям и болезням.

Так как одним из методов селекции является гибридизация, то большую роль играет выбор типа скрещиваний, т.е. система скрещиваний.

Системы скрещивания могут быть разделены на два основных типа: близкородственное (инбридинг -- разведение в себе) и скрещивание между неродственными формами (аутбридинг -- неродственное разведение). Если принудительное самоопыление приводит к гомозиготизации, то неродственные скрещивания -- к гетерозиготизации потомков от этих скрещиваний.

Инбридинг, т.е. принудительное самоопыление перекрестноопыляющихся форм, кроме прогрессирующей с каждым поколением степени гомозиготности, приводит и к распадению, разложению исходной формы на ряд чистых линий. Такие чистые линии будут обладать пониженной жизнеспособностью, что, по-видимому, связано с переходом из генетического груза в гомозиготное состояние всех рецессивных мутаций, которые в. основном являются вредными.

Чистые линии, полученные в результате инбридинга, имеют различные свойства. У них различные признаки проявляются по-разному. Кроме того, различна и степень снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то, как правило, наблюдается эффект гетерозиса.

Гетерозис -- явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей. Уже со второго поколения гетерозисный эффект угасает. Генетические основы гетерозиса не имеют однозначного толкования, но предполагается, что гетерозис связан с высоким уровнем гетерозиготности у гибридов чистых линий (межлинейные гибриды). Производство чистолинейного материала кукурузы с использованием так называемой цитоплазматической мужской стерильности было широко изучено и поставлено на промышленную основу в США. Ее использование исключало необходимость кастрировать цветки, удалять пыльники, так как мужские цветки растений, используемые в качестве женских, были стерильны.

Разные чистые линии обладают разной комбинационной способностью, т. е. дают неодинаковый уровень гетерозиса при скрещиваниях друг с другом. Поэтому, создав большое количество чистых линий, экспериментально определяют наилучшие комбинации скрещиваний, которые затем используются в производстве.

Отдаленная гибридизация -- это скрещивание растений, относящихся к различным видам. Отдаленные гибриды, как правило, стерильны, что связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. В результате этого формируются стерильные гаметы. Для устранения данной причины в 1924 г. советским ученым Г. Д. Карпеченко было предложено использовать удвоение числа хромосом у отдаленных гибридов, которое приводит к образованию амфидиплоидов.

Таким методом кроме тритикале были получены многие ценные отдаленные гибриды, в частности многолетние пшенично-пырейные гибриды и др. У таких гибридов в клетках содержится полный диплоидный набор хромосом одного и другого родителя, поэтому хромосомы каждого родителя конъюгируют друг с другом и мейоз проходит нормально. Путем скрещивания с последующим удвоением числа хромосом терна и алычи удалось повторить эволюцию -- произвести ресинтез вида сливы домашней.

Подобная гибридизация позволяет полностью совместить в одном виде не только хромосомы, но и свойства исходных видов. Например, тритикале сочетает многие качества пшеницы (высокие хлебопекарные качества) и ржи (высокое содержание незаменимой аминокислоты лизина, а также способность расти на бедных песчаных почвах).

Это один из примеров использования в селекции полиплоидии, точнее аллоплоидии. Еще более широко используется автополиплоидия. Например, в Беларуси возделывается тетраплоидная рожь, выведены сорта полиплоидных овощных культур, гречихи, сахарной свеклы. Все эти формы обладают более высокой урожайностью по сравнению с исходными формами, сахаристостью (свекла), содержанием витаминов и других питательных веществ. Многие культуры представляют собой естественные полиплоиды (пшеница, картофель и д.р.).

Выведение новых высокопродуктивных сортов растений играет важнейшую роль в повышении урожайности и обеспечении населения продовольствием. Во многих странах мира идет «зеленая революция» -- резкая интенсификация сельскохозяйственного производства за счет выведения новых сортов растений интенсивного типа. В нашей стране также получены ценные сорта многих сельскохозяйственных культур.

При использовании новых методов селекции получены новые сорта растений. Так, академиком Н. В. Цициным путем отдаленной гибридизации пшеницы с пыреем и последующей полиплоидизации выведены многолетние пшеницы. Такими же методами получены перспективные сорта новой зерновой культуры тритикале. Для селекции вегетативно размножаемых растений используются соматические мутации (они использовались и И.В. Мичуриным, но он называл их почковыми вариациями). Широкое применение получили многие методы И. В. Мичурина после их генетического осмысления, хотя некоторые из них теоретически так и не разработаны. Большие успехи достигнуты в использовании результатов мутационной селекции в выведении новых сортов зерновых, хлопчатника и кормовых культур. Однако наибольший вклад во все возделываемые сорта внесли образцы коллекции мирового генофонда культурных растений, собранные Н. И. Вавиловым и его учениками.

4.Селекция животных, методы

Хотя основные принципы селекции животных существенно не отличаются от принципов селекции растений, все-таки они имеют ряд характерных особенностей. Так, у животных существует только половое размножение, смена поколений происходит редко (через несколько лет), количество особей в потомстве невелико. У них особенно сильно выражено модифицирующее влияние факторов внешней среды и затруднен анализ генотипа. Поэтому большую роль приобретает анализ совокупности внешних признаков, характерных для породы.

Одомашнивание животных началось, вероятно, 10-- 12 тыс. лет назад. Оно происходило в основном в тех же районах, где расположены и центры многообразия и происхождения культурных растений. Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости и расширило ее спектр. Поэтому одомашнивание сразу же сопровождалось и отбором. По-видимому, сначала это был бессознательный отбор, т. е. отбор тех особей, которые лучше выглядели, имели более смирный нрав и т. д. Однако постепенно начал использоваться отбор методический, осознанный и направленный на формирование у животных определенных качеств, удовлетворяющих те или иные потребности человека в данных конкретных природных и экономических условиях. Опыт многих поколений позволил создать методы и правила племенного отбора и подбора и сформировать селекцию животных как науку.

Типы скрещивания и методы разведения внедрялись в селекцию животных часто путем экстраполяции из селекции растений. Это было связано с тем, что внедрение генетических знаний в селекцию растений началось гораздо раньше, чем в селекцию животных из-за дороговизны животных объектов, меньшего количества их в семье и т. д. Такая экстраполяция, проводившаяся без учета специфики объекта, часто давала отрицательные результаты. Так, в частности, метод инбридинга был внедрен из селекции растений-самоопылителей в селекцию животных как основной метод, хотя позже была установлена необоснованность его широкого использования, так как породы животных скорее соответствуют сортам-популяциям перекрестноопылителей. Породы являются сложными полигетерозиготными комплексами, генотипы внутри которых приведены в определенную систему. Поэтому основной тип скрещиваний -- аутбридинг, хотя в селекции используется и инбридинг -- родственное скрещивание между братьями и сестрами или между родителями и потомством. Так как инбридинг ведет к гомозиготности, то он ослабляет животных, снижает их устойчивость к условиям среды, повышает заболеваемость. Тем не менее, при выведении новых пород зачастую возникает необходимость в инбридинге с целью закрепления в породе характерных хозяйственно ценных признаков, предотвращения их «растворения», сглаживания в неродственных скрещиваниях. Иногда его практикуют даже в течение нескольких поколений с целью получения в чистом виде какого-то важного признака, а затем обязательно используют аутбридинг и выводят гетерозисное потомство. Неродственное скрещивание в пределах породы и даже между породами ведет к поддержанию и усилению ценных качеств породы, если такое скрещивание сопровождается отбором характерных признаков.

Хорошим примером межпородного скрещивания может служить выведенная академиком М. Ф. Ивановым высокопродуктивная порода свиней белая степная украинская от скрещивания местных беспородных украинских свиней с высокопродуктивными белыми английскими (на первом этапе). Затем применялось повторное межпородное скрещивание, несколько поколений инбридинга, давшего начало нескольким отобранным чистым линиям, которые были скрещены между собой. Таким образом, уделяя должное внимание подбору исходных производителей, их качеству, комбинируя аутбридинг, инбридинг и используя жесткий отбор потомства по необходимым признакам, селекционер реализует свою идею, свои планы, свое представление о породе.

Основными методами анализа наследственных хозяйственно ценных признаков у животных производителей являются анализ экстерьера и оценка по потомству. Для выведения новой породы животных, обладающей комплексом ценных признаков в соответствии с планом селекционера и требованиями производства, большое значение имеют правильный подбор и оценка качества исходных производителей. Оценку производят в первую очередь по экстерьеру, т. е. фенотипу. Под экстерьером понимают всю совокупность наружных форм и признаков животных, включая их телосложение, соотношение частей тела животного и даже масти и наличия для каждой породы своей экстерьерной «метки». При этом для опытного селекционера несущественные признаки интереса не представляют, им выбираются главные. Но в то же время, исследовав коррелятивные связи между признаками, можно по чисто внешним несущественным фенотипическим проявлениям проследить за наследованием трудно контролируемых, связанных с ними хозяйственно ценных признаков.

Так как подбор производителей в некотором смысле является решающим фактором, то во избежание ошибок селекционерами часто используется как бы «пристрелочный» предварительный эксперимент, суть которого состоит в оценке производителей по потомству, что особенно важно при оценке признаков, не проявляющихся у самцов. Для оценки проводится скрещивание производителей-самцов с несколькими самками, определяются продуктивность и другие качества потомства. Чтобы оценить качество наследственности, например быков-производителей по жирномолочности, петухов по яйценоскости и т. д., признаки полученного потомства сравниваются со средне-породными и материнскими признаками.

Отдаленная гибридизация домашних животных менее продуктивна, чем у растений, так как преодолеть стерильность отдаленных гибридов невозможно, если она проявляется. Правда, в некоторых случаях отдаленная гибридизация видов с родственными хромосомными наборами не приводит к нарушению мейоза, а ведет к нормальному слиянию гамет и развитию зародыша у отдаленных гибридов, что позволило получить некоторые ценные породы, сочетающие полезные признаки обоих использованных в гибридизации видов. Например, получены породы тонкорунных архаромериносов, которые, как и архары, могут использовать высокогорные пастбища, недоступные для тонкорунных мериносов. Успешно завершились попытки улучшить породы местного крупного рогатого скота скрещиванием его с зебу и яками.

Следует отметить, что не всегда необходимо добиваться плодовитого потомства от отдаленной гибридизации. Иногда полезны и стерильные гибриды, как, например, веками использующиеся мулы -- стерильные гибриды лошади и осла, отличающиеся выносливостью и долговечностью.

Селекция микроорганизмов, методы

К микроорганизмам относятся, прежде всего, прокариоты (бактерии, актиномицеты, микоплазмы и др.) и одноклеточные эукариоты -- простейшие, дрожжи и др. Из более 100 тыс. видов, известных в природе микроорганизмов, в хозяйственной деятельности человека используется уже несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние 20-30 лет, когда были установлены многие генетические механизмы регуляции биохимических процессов, происходящих в клетках микроорганизмов.

Микроорганизмы играют исключительно важную роль в биосфере и в жизни человека. Многие из них продуцируют десятки видов органических веществ -- аминокислот, белков, антибиотиков, витаминов, липидов, нуклеиновых кислот, ферментов, пигментов, Сахаров и т. п., широко используемых в разных областях промышленности и медицины. Такие отрасли пищевой промышленности, как хлебопечение, производство спирта, некоторых органических кислот, виноделие и многие другие, основаны на деятельности микроорганизмов.

Микробиологическая промышленность предъявляет к продуцентам различных соединений жесткие требования, которые важны для технологии производства: ускоренный рост, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению микроорганизмами. Научная основа этой промышленности -- умение создавать микроорганизмы с новыми, заранее определенными генетическими свойствами и умение использовать их в промышленных масштабах.

Селекция микроорганизмов (в отличие от селекции растений и животных) имеет ряд особенностей:

у селекционера имеется неограниченное количество материала для работы -- за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток;

более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении;

организация генома бактерий более проста: меньше генов в геноме, менее сложна и генетическая регуляция взаимодействия генов.

Эти особенности накладывают свой отпечаток на методы селекции микроорганизмов, которые во многом существенно отличаются от методов селекции растений и животных. Например, в селекции микроорганизмов обычно используются их естественные способности синтезировать какие-либо полезные для человека соединения (аминокислоты, витамины, ферменты и др.). В случае использования методов генной инженерии можно заставить бактерии и другие микроорганизмы продуцировать те соединения, синтез которых в естественных природных условиях им никогда не был присущ (например, гормоны человека и животных, биологически активные соединения).

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, которые интересуют селекционера. Для использования в микробиологической промышленности нужны высокопродуктивные штаммы, которые создают различными методами селекции, в том числе отбором среди природных микроорганизмов.

Отбору высокопродуктивных штаммов предшествует целенаправленная работа селекционера с генетическим материалом исходных микроорганизмов. В частности, широко используют различные способы рекомбинирования генов: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) позволила создать штамм, способный утилизировать углеводороды нефти. Часто прибегают к трансдукции (перенос гена из одной бактерии в другую, посредством бактериофагов), трансформации (перенос ДНК, изолированной из одних клеток, в другие) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся в плазмиде, а не в основной хромосоме. Поэтому увеличение путем амплификации числа этих плазмид позволяет существенно повысить производства антибиотиков.

Важнейшим этапом в селекционной работе является индуцирование мутаций. Экспериментальное получение мутаций открывает почти неограниченные перспективы для создания исходного материала в селекции. Вероятность (частота) возникновения мутаций у микроорганизмов (10-10 -- 10-6) ниже, чем у всех других организмов (10-6 --10-4). Но вероятность выделения мутаций по данному гену у бактерий значительно выше, чем у растений и животных, поскольку получить многомиллионное потомство у микроорганизмов довольно просто и быстро.

Для выделения мутаций служат селективные среды, на которых способны расти мутанты, но погибают исходные родительские особи дикого типа. Проводится так же отбор по окраске и форме колоний, скорости роста мутантов и диких форм и т.д.

Отбор по продуктивности (например, продуцентов антибиотиков) осуществляется по степени антагонизма и угнетения роста чувствительного штамма. Для этого штамм-продуцент высевается на «газон» чувствительной культуры. По размеру пятна, где отсутствует рост чувствительного штамма вокруг колонии штамма-продуцента, судят о степени активности (в данном случае антибиотической). Для размножения, естественно, отбираются наиболее продуктивные колонии. В результате селекции производительность продуцентов удается увеличить в сотни -- тысячи раз. Например, комбинируя мутагенез и отбор в работе с грибом Penicillium, выход антибиотика пенициллина увеличили примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Роль микроорганизмов в микробиологической, пищевой промышленности, в сельском хозяйстве и других областях трудно переоценить. Особенно важно отметить то, что многие микроорганизмы для производства ценных продуктов используют отходы промышленного производства, нефтепродукты и тем самым производят их разрушение, предохраняя от загрязнения окружающую среду.

5.Биотехнология, генетическая и клеточная инженерия

Биотехнология -- это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее Обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов -- микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.). Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других денных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Генетическая инженерия -- один из важнейших методов биотехнологии. Она предполагает целенаправленное искусственное создание определенных комбинаций генетического материала, способных нормально функционировать в клетке, т. е. размножаться и контролировать синтез конечных продуктов. Можно выделить несколько разновидностей метода генетической инженерии в зависимости от уровня и особенностей его использования.

Генетическая инженерия используется в основном на прокариотах и микроорганизмах, хотя в последнее время начала применяться и на высших эукариотах (например, на растениях). Этот метод включает выделение из клеток отдельных генов или синтез генов вне клеток (например, на основе матричной РНК, синтезированной данным геном), направленную перестройку, копирование и размножение выделенных или синтезированных генов (клонирование генов), а также их перенос и включение в подлежащий изменению геном. Таким путем можно добиться включения в клетки бактерий «чужих» генов и синтеза бактериями важных для человека соединений. Благодаря этому в геном кишечной палочки удалось ввести ген синтеза инсулина из генома человека. Инсулин, синтезированный бактериями, используется для лечения больных сахарным диабетом.

Развитие генетической инженерии стало возможным благодаря открытию двух ферментов -- рестриктаз, разрезающих молекулу ДНК в строго определенных участках, и лигаз, сшивающих кусочки различных молекул ДНК друг с другом. Кроме того, в основе генетической инженерии лежит открытие векторов, которые представляют собой короткие, самостоятельно размножающиеся в клетках бактерий кольцевые молекулы ДНК. С помощью рестриктаз и лигаз в векторы и встраивают необходимый ген, добиваясь впоследствии его включения в геном клетки-хозяина.

Клеточная инженерия -- это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Она базируется на использовании методов культуры клеток и тканей. Выделяются два направления клеточной инженерии: 1) использование клеток, переведенных в культуру, для синтеза различных полезных для человека соединений; 2) применение культивируемых клеток для получения из них растений-регенерантов.

Растительные клетки в культуре -- это важный источник ценнейших природных веществ, так как они сохраняют способность синтезировать свойственные им вещества: алкалоиды, эфирные масла, смолы, биологически активные соединения. Так, переведенные в культуру клетки женьшеня продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем, в культуре с клетками и их геномами можно проводить любые манипуляции. Используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию (в том числе и отдаленную) гораздо легче и проще, чем на уровне целостного организма. Кроме этого, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.

Путем гибридизации лимфоцитов (клеток, синтезирующих антитела, но неохотно и недолго растущих в культуре) с опухолевыми клетками, обладающими потенциальным бессмертием и способными к неограниченному росту в искусственной среде, решена одна из важнейших задач биотехнологии на современном этапе -- получены клетки гибридомы, способные к бесконечному синтезу высокоспецифических антител определенного типа.

Таким образом, клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса, гибридизации и, более того, комбинировать отдельные фрагменты разных клеток (ядра, митохондрии, пластиды, цитоплазму, хромосомы и т. д.), клетки различных видов, относящиеся не только к разным родам, семействам, но и царствам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Клеточная инженерия широко используется в селекции растений. Выведены гибриды томата и картофеля, яблони и вишни. Регенерированные из таких клеток растения с измененной наследственностью позволяют синтезировать новые формы, сорта, обладающие полезными свойствами и устойчивые к неблагоприятным условиям среды и болезням. Этот метод широко используется и для «спасения» ценных сортов, пораженных вирусными болезнями. Из их ростков в культуре выделяют несколько верхушечных клеток, еще не пораженных вирусом, и добиваются регенерации из них здоровых растений сначала в пробирке, а затем пересаживают в почву и размножают.

Заключение

Для того чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача -- она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем -- непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.

Список литературы

1.Биология. / Н.П.Соколова, И.И.Андреева и др. - М.: Высшая школа, 1987. 304с.

2.Колесников С.И. Экология. - Ростов-на-Дону: Феникс, 2003. - 384с.

3.Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.- М.: Айрис-пресс, 2005. 512с.

4.Петров Б.Ю. Общая биология. - СПб.: Химия, 1999. - 420с

5.Петров К.М. Взаимодействие общества и природы: Учебное пособие для вузов. -- СПб: Химия, 1998. - 408с.

Размещено на Allbest.ru

Подобные документы

    Селекция как наука о методах создания новых пород животных, сортов растений, штаммов микроорганизмов с нужными человеку признаками. Особенности селекции животных на современном этапе, используемые методы и принципы, подходы, инструментарий и назначение.

    презентация , добавлен 25.01.2012

    Общие сведения и история селекции - науки о методах создания новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов, с полезными для человека свойствами. Основные принципы селекции животных, ее некоторые особенности.

    презентация , добавлен 06.09.2016

    Создания и совершенствования сортов культурных растений и пород домашних животных, применение этих методов в растениеводстве (селекция растений) и животноводстве (селекция животных). Сорта растений и породы животных с нужными биологическими свойствами.

    презентация , добавлен 25.10.2011

    Виды селекции и ее значение. Методы селекции микроорганизмов и животных. Биотехнология, генетическая и клеточная инженерия. Цели и задачи селекции как науки. Процесс одомашнивания новых видов растений и животных для удовлетворения потребностей человека.

    курсовая работа , добавлен 10.09.2010

    Селекция как наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. Центры происхождения культурных растений. Закон гомологических рядов. Индуцированный мутагенез. Полиплоидия и гибридизация в селекции.

    презентация , добавлен 09.12.2011

    Наука о выведении новых форм живых организмов и задачи селекции по улучшению качества продукции, сортов и пород. Генетическое разнообразие растений, животных и их географическое распространение, гетерозис и инбридинг, их значение в природе и отборе.

    презентация , добавлен 17.09.2012

    Селекция как наука об улучшении уже существующих и о выведении новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами, ее цели и задачи, направления развития на сегодня. Сферы использования методов селекции.

    презентация , добавлен 18.04.2013

    Селекция как наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов, ее цели и задачи, используемые методы и приемы, современные достижения. Понятие и принципы гибридизации. Типы отбора и значение мутогенеза.

    презентация , добавлен 15.12.2015

    Понятие селекции как эволюции, управляемой человеком. Выведение новых сортов растений и пород животных для человека свойствами как основная задача селекционеров. Методы селекции: отбор, гибридизация, мутагенез. Центры происхождения культурных растений.

    презентация , добавлен 23.02.2013

    Закономерности наследственности и мутационной изменчивости как основа теории селекции, ее задачи и методы. Выведение новых пород животных, сортов растений, микроорганизмов с учетом законов эволюции, роль внешней среды в развитии и формировании признаков.

Селекция - отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.

Породы животных, сорта растений, штаммы микроорганизмов - это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.

Основные методы селекции

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим. Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами. В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Показатели Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существание Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Массовый отбор - выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства.
Индивидуальный отбор - выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный - в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.

Внутривидовая гибридизация - скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой - ведёт к снижению жизнеспособности, продуктивности и вырождению. Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом . Основная причина эффекта гетерозиса - отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдалённая) гибридизация - скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале - гибрид пшеницы и ржи, мул - гибрид кобылы с ослом, лошак - гибрид коня с ослицей). Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия

Полиплоидия - увеличение числа хромосомных наборов.

Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Индуцированный мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез - воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Клеточная и генная инженерия

Биотехнология - методы и приёмы получения полезных для человека продуктов и явлений с помощью живых организмов (бактерий, дрожжей и др.). Биотехнология открывает новые возможности для селекции. Её основные направления: микробиологический синтез, генная и клеточная инженерия.
Микробиологический синтез - использование микроорганизмов для получения белков, ферментов, органических кислот, лекарственных препаратов и других веществ. Благодаря селекции удалось вывести микроорганизмы, которые вырабатывают нужные человеку вещества в количествах, в десятки, сотни и тысячи раз превышающих потребности самих микроорганизмов. С помощью микроорганизмов получают лизин (аминокислоту, не образующуюся в организме животных; её добавляют в растительную пищу), органические кислоты (уксусную, лимонную, молочную и др.), витамины, антибиотики и т. д.
Клеточная инженерия - выращивание клеток вне организма на специальных питательных средах, где они растут и размножаются, образуя культуру ткани. Из клеток животных нельзя вырастить организм, а из растительных клеток можно. Так получают и размножают ценные сорта растений. Клеточная инженерия позволяет проводить гибридизацию (слияние) как половых, так и соматических клеток. Гибридизация половых клеток позволяет проводить оплодотворение «в пробирке» и имплантацию оплодотворённой яйцеклетки в материнский организм. Гибридизация соматических клеток делает возможным создание новых сортов растений, обладающих полезными признаками и устойчивых к неблагоприятным факторам внешней среды.
Генная инженерия - искусственная перестройка генома. Позволяет встраивать в геном организма одного вида гены другого вида. Так, введя в генотип кишечной палочки соответствующий ген человека, получают гормон инсулин. В настоящее время человечество вступило в эпоху конструирования генотипов клеток.



Селекция растений, животных и микроорганизмов

Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.
Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И. Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.
В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия.
Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин. На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны.
Многие сорта культурных растений являются полиплоидными. Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д. Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).
К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.

Селекция животных

Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией) . Почти все домашние животные относятся к высшим позвоночным животным - птицам и млекопитающим.
В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация .
Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно. В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного. Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п. Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье). Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).
Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов. Но благодаря проявлению гетерозиса широко используется человеком. Среди достижений по отдалённой гибридизации животных следует отметить мула - гибрида кобылы с ослом, бестера - гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.

Селекция микроорганизмов

К микроорганизмам относятся прокариоты - бактерии, сине-зелёные водоросли; эукариоты - грибы, микроскопические водоросли, простейшие.
В селекции микроорганизмов наиболее широко используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток (клонов), методы клеточной и генной инженерии .
Деятельность микроорганизмов используют в промышленности, сельском хозяйстве, медицине. Ферментативную активность микроорганизмов (грибов и бактерий) используют в производстве молочных продуктов, хлебопечении, виноделии и др. С помощью микроорганизмов получают аминокислоты, белки, ферменты, спирты, полисахариды, антибиотики, витамины, гормоны, интерферон и пр.
Выведены штаммы бактерий, способные разрушать нефтепродукты, что позволит использовать их для очистки окружающей среды. Ведутся работы по перенесению генетического материала азотфиксирующих микроорганизмов в геном почвенных бактерий, которые этими генами не обладают, а также непосредственно в геном растений. Это позволит избавиться от необходимости производить огромное количество азотных удобрений.

История

Первоначально в основе селекции лежал искусственный отбор , когда человек отбирает растения или животных с интересующими его признаками. До XVI-XVII веков отбор происходил бессознательно: то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении.

Только в последнее столетие человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени.

Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы , которые уже существуют в популяции . Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию , скрещивая растения с желательными признаками и в дальнейшем отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно. Например, один сорт пшеницы отличается прочным стволом и устойчив к полеганию, а сорт с тонкой соломиной не заражается стеблевой ржавчиной. При скрещивании растений из двух сортов в потомстве возникают различные комбинации признаков. Но отбирают именно те растения, которые одновременно имеют прочную соломину и не болеют стеблевой ржавчиной. Так создается новый сорт .

Селекция и генетика

Селекция как наука оформилась лишь в последние десятилетия. В прошлом она была больше искусством, чем наукой. Навыки, знания и конкретный опыт, нередко засекреченный, были достоянием отдельных хозяйств, переходя от поколения к поколению. Только гению Дарвина удалось обобщить весь этот огромный и разрозненный опыт прошлого, выдвинув идею естественного и искусственного отбора как основного фактора эволюции наряду с наследственностью и изменчивостью.
Н. И. Вавилов Как строить курс генетики, селекции и семеноводства // Яровизация . - 1939. - № 1. - С. 131-135.

Общие сведения

Теоретической основой селекции является генетика , так как именно знание законов генетики позволяет целенаправленно управлять появлением мутаций , предсказывать результаты скрещивания, правильно проводить отбор гибридов . В результате применения знаний по генетике удалось создать более 10000 сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины и т. п.

К задачам современной селекции относится создание новых и улучшение уже существующих сортов растений, пород животных и штаммов микроорганизмов.

Многолетняя селекционная работа позволила вывести много десятков пород домашних кур, отличающихся высокой яйценоскостью, большим весом, яркой окраской и т. п. А их единый предок - банкивская кура из Юго-Восточной Азии. На территории России не растут дикие представители рода крыжовник . Однако на основе вида крыжовник отклоненный, встречающийся на Западной Украине и Кавказе, получено более 300 сортов, многие из которых прекрасно плодоносят в России.

Выдающийся генетик и селекционер академик Н. И. Вавилов писал, что селекционеры должны изучать и учитывать в своей работе следующие основные факторы: исходное сортовое и видовое разнообразие растений и животных; наследственную изменчивость; роль среды в развитии и проявлении нужных селекционеру признаков; закономерности наследования при гибридизации ; формы искусственного отбора, направленные на выделение и закрепление необходимых признаков.

Селекция растений

Основные методы селекции вообще и селекции растений в частности - отбор и гибридизация . Для перекрестноопыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Таким образом получают, например, новые сорта ржи . Эти сорта не являются генетически однородными. Если же желательно получение чистой линии - то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками. Таким методом были получены многие сорта пшеницы, капусты, и т. п.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестноопыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого - переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают, выбраковываясь естественным отбором.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестноопыляемых растений для получения гомозиготных («чистых») линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса : гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Эффект гетерозиготной (или гибридной) мощности бывает сильным только в первом гибридном поколении, а в следующих поколениях постепенно снижается. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина - объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия , так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. В сельскохозяйственной практике широко используются триплоидная сахарная свекла , четырехплоидный клевер , рожь и твердая пшеница, а также шестиплоидная мягкая пшеница. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления , в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре. Одно из таких веществ - колхицин . Применение колхицина для получения искусственных полиплоидов является одним из примеров искусственного мутагенеза , применяемого при селекции растений.

Путем искусственного мутагенеза и последующего отбора мутантов были получены новые высокоурожайные сорта ячменя и пшеницы. Этими же методами удалось получить новые штаммы грибов, выделяющие в 20 раз больше антибиотиков , чем исходные формы. Сейчас в мире культивируют более 250 сортов сельскохозяйственных растений, созданных при помощи физического и химического мутагенеза. Это сорта кукурузы, ячменя, сои, риса, томатов, подсолнечника, хлопчатника, декоративных растений.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом . Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

К одному из достижений современной генетики и селекции относится преодоление бесплодия межвидовых гибридов. Впервые это удалось сделать Г. Д. Карпеченко при получении капустно-редечного гибрида. В результате отдаленной гибридизации было получено новое культурное растение - тритикале - гибрид пшеницы с рожью. Отдаленная гибридизация широко применяется в плодоводстве.

Селекция животных

Особенности

Основные принципы селекции животных не отличаются от принципов селекции растений. Однако селекция животных имеет некоторые особенности: для них характерно только половое размножение; в основном очень редкая смена поколений (у большинства животных через несколько лет); количество особей в потомстве невелико. Поэтому в селекционной работе с животными важное значение приобретает анализ совокупности внешних признаков, или экстерьера, характерного для той или иной породы.

Одомашнивание

Одним из важнейших достижений человека на заре его становления и развития (10-12 тыс. лет назад) было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У домашних животных весьма развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур давать более 300 яиц в год лишена биологического смысла, поскольку такое количество яиц курица не сможет высиживать. Поэтому в естественных условиях одомашненные формы существовать не могут.

Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости и расширило его спектр. При этом одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более спокойный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у животных определенных качеств, удовлетворяющих человека.

Процесс одомашнивания новых животных для удовлетворения потребностей человека продолжается и в наше время. Например, для получения модной и высококачественной пушнины создана новая отрасль животноводства - пушное звероводство.

Отбор и типы скрещивания

Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Это может быть целенаправленное получение определенного экстерьера, повышение молочности, жирности молока, качества мяса и т. д. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учет родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей.

В селекционной работе с животными применяют в основном два способа скрещивания: аутбридинг и инбридинг.

Аутбридинг, или неродственное скрещивание между особями одной породы или разных пород животных, при дальнейшем строгом отборе приводит к поддержанию полезных качеств и к усилению их в ряду следующих поколений.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец-дочь, мать-сын, двоюродные братья-сестры и т. д.). Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственное скрещивание используют при инбридинге. Однако гомозиготизация при инбридинге, как и в случае растений, ведет к ослаблению животных, снижает их устойчивость к воздействию среды, повышает заболеваемость. Во избежание этого необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

У домашних животных, как и у растений, наблюдается явление гетерозиса: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности. Классическим примером проявления гетерозиса является мул - гибрид кобылы и осла . Это сильное, выносливое животное, которое может использоваться в значительно более трудных условиях, чем родительские формы.

Гетерозис широко применяют в промышленном птицеводстве (пример - бройлерные цыплята) и свиноводстве, так как первое поколение гибридов непосредственно используют в хозяйственных целях.

Отдаленная гибридизация. Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно. Правда, в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов. Например, в Казахстане на основе гибридизации тонкорунных овец с диким горным бараном архаром создана новая порода тонкорунных архаромериносов, которые, как и архары, пасутся на высокогорных пастбищах, недоступных для тонкорунных мериносов. Улучшены породы местного крупного рогатого скота.

Достижения российских и белорусских селекционеров-животноводов

Селекционерами России достигнуты значимые успехи в создании новых и улучшении существующих пород животных. Так, костромская порода крупного рогатого скота отличается высокой молочной продуктивностью - более 10 тыс. кг молока в год. Сибирский тип российской мясо-шерстной породы овец характеризуется высокой мясной и шерстной продуктивностью. Средняя масса племенных баранов составляет 110-130 кг, а средний настриг шерсти в чистом волокне - 6-8 кг. Большие достижения имеются также в селекции свиней, лошадей, кур и многих других животных.

В результате длительной и целенаправленной селекционно-племенной работы учеными и практиками Беларуси выведен черно-пестрый тип крупного рогатого скота. Коровы этой породы в хороших условиях кормления и содержания обеспечивают удои по 4-5 тыс. кг молока жирностью 3,6- 3,8 % в год. Генетический же потенциал молочной продуктивности черно-пестрой породы составляет 6,0-7,5 тыс. кг молока за лактацию. В хозяйствах Беларуси насчитывается около 300 тыс. голов скота такого типа.

Породы белорусских черно-пестрых и крупных белых свиней созданы специалистами селекционного центра БслНИИ животноводства. Такие породы свиней отличаются тем, что животные достигают живой массы 100 кг за 178-182 дня на контрольном откорме при среднесуточном приросте свыше 700 г, а приплод составляет 9-12 поросят за опорос.

Различные кроссы кур (например, Беларусь-9) характеризуются высокой яйценоскостью: за 72 недели жизни - 239-269 яиц при средней массе каждого 60 г, что соответствует показателям высокопродуктивных кроссов на международных конкурсах.

Продолжается селекционная работа по укрупнению, повышению скороспелости и работоспособности лошадей белорусской упряжной группы, улучшению продуктивного потенциала овец по настригу шерсти, живой массе и плодовитости, по созданию линий и кроссов мясных уток, гусей, высокопродуктивной породы карпа и др.

См. также

Литература

  • Регель Р. Э. Научные основы селекции в связи с предусматриванием константности форм по морфологическим признакам // Тр. 1-го съезда деятелей по селекции сельскохозяйственных растений. Харьков, 1911. Вып. 4. С. 1-83.
  • Регель Р. Э. Селекция с научной точки зрения // Тр. Бюро по прикл. ботанике. 1912. T. 5. № 11. C. 425-623.
  • Фрувирт К. Селекция кукурузы, кормовой свеклы и других корнеплодов, масличных растений и кормовых злаков. Приложение 9-е к Трудам по прикладной ботанике, 1914
  • Фрувирт К. Селекция картофеля, земляной груши, льна, конопли, табака, хмеля, гречихи и бобовых растений. Приложение 11-е к Трудам по прикладной ботанике, 1914
  • Фрувирт К. Селекция колониальных растений, то есть сахарного тростника, риса, просовых, кофейного дерева, какао, померанцевых, хлопчатника и других волокнистых растений, сладкого картофеля, маниока, земляного ореха, масличной пальмы, маслины и кунжута. Приложение 13-е к Трудам по прикладной ботанике, 1915
  • Алёшин Е. П., Алёшин Н. Е. Рис. Москва, 1993. 504 стр. 100
  • Красота В. Ф., Джапаридзе Т. Г., Костомахин, Н. М. Разведение сельскохозяйственных животных. - 5-е изд., перераб. и доп. М.: КолосС, 2005. - 424 с.

Примечания


Wikimedia Foundation . 2010 .

Синонимы :
  • 1935 год в музыке
  • Чибча (цивилизация)

Смотреть что такое "Селекция" в других словарях:

    СЕЛЕКЦИЯ - (от лат. selectio выбор, отбор), наука о методах создания сортов, гибридов растений и пород животных, штаммов микроорганизмов с нужными человеку признаками. С. называют также отрасль с. х. производства, занимающуюся выведением сортов и гибридов с … Биологический энциклопедический словарь

    СЕЛЕКЦИЯ - СЕЛЕКЦИЯ, в сельском хозяйстве процесс, посредством которого скотоводы и агрономы улучшают породы домашних животных и культурных растений. Включает отбор и спаривание особей с желательными характеристиками в ФЕНОТИПЕ. Отбор направлен на то,… … Научно-технический энциклопедический словарь

    селекция - и, ж. sélection < selectio отбор. 1. Улучшение сорта растений или породы животных путем искусственного отбора. Селекция сельскохозяйственных растений. Уш. 1940. Селекция картофеля. БАС 1. || перен. Последние <крупные войны и революции>… … Исторический словарь галлицизмов русского языка

    СЕЛЕКЦИЯ - (от лат. selectio – выбор, отбор) – подбор, отбор; в дарвинизме – выживание организмов, которому благоприятствуют внутренние или внешние условия, при одновременном отмирании других, которые находятся в менее благоприятных условиях и поэтому… … Философская энциклопедия

    СЕЛЕКЦИЯ - СЕЛЕКЦИЯ, селекции, мн. нет, жен. (лат. selectio отбор) (с. х.). Улучшение сорта растения или породы животных путем искусственного отбора. Селекция сельскохозяйственных растений. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Селекция - Сектор экономики крупная часть экономики, обладающая сходными общими характеристиками, что позволяет отделить ее других частей экономики в теоретических или практических целях. По формам хозяйствования различают частный, государственный и другие… … Финансовый словарь

Предметом селекции растений является теоретическая разработка и практическое выведение новых сортов растений, а также усовершенствование старых сортов.

Растений широко использует общие методы селекции, но имеет свои особенности по сравнению с селекцией животных и микроорганизмов.

В селекции растений большую роль играет разнообразие селекционного материала. Вопросам изучения разнообразия исходного материала посвящены труды Н. И. Вавилова и его последователей. Были исследованы центры происхождения современных растений, возделываемых человеком. Н. И. Вавилов выделил восемь таких центров, наиболее важными среди которых являются:

1) Китайский (Восточно-азиатский) - здесь были выведены соя, некоторые сорта ячменя, лука, баклажан, груш, яблонь и других растений;

2) Среднеазиатский - родина пшеницы и зернобобовых культур;

3) Средиземноморский - родина многих овощей (капусты, петрушки, репы, лука репчатого и т. д.), кормовых культур;

4) Южно-американский - родина картофеля, подсолнечника, арахиса, маниоки и других культурных растений.

В этих центрах и в настоящее время произрастают предки современных культурных растений и их можно (и нужно) использовать в селекции растений. Были созданы фонды и коллекции семян исходных форм растений, которые использовались учеными-селекционерами для выведения новых сортов растений.

В селекции растений организмы можно условно разделить на две группы: одно- и двулетние травянистые формы и многолетние древесно-кустарниковые формы. К этим группам растений применимы разные методы селекции. Для первой группы более широко применим массовый отбор и в меньшей степени - индивидуальный, для второй группы более применим индивидуальный отбор.

В выведении новых сортов растений для близкородственного скрещивания используют самоопыление и получают чистые линии (этот метод применим для всех растений).

Получение «чистых линий» практикуют не только для собственно селекционной работы, но и для повышения урожайности растений, используя явление гетерозиса.

Гетерозис - резкое усиление продуктивности организмов первого поколения, полученного при скрещивании особей «чистых линий».

В селекции растений широко применяют явление полиплоидии для преодоления барьера нескрещиваемости при межвидовой гибридизации и повышения урожайности некоторых растений, например сахарной свеклы. Полиплоидия, помимо сахарной свеклы, характерна для пшеницы, ржи, турнепса и др. растений.

Спецификой селекции растений является применение соматических мутаций, так как растения способны к вегетативному размножению. За счет применения таких мутаций был выведен сорт яблок Антоновка полуторафунтовая (шестисотграммовая). Использование соматических мутаций возможно из-за широкого применения метода прививок, специфического метода, возможного для многолетних древесно-кустарниковых форм, к которым относятся многие плодово-ягодные культуры.

Прививки и вегетативная гибридизация являются специфическими методами в селекции плодово-ягодных культур. Ученым-практиком, широко применявшим эти методы в селекции плодово-ягодных культур, был И. В. Мичурин. Он также использовал и метод управления доминированием признаков в форме воздействия на гибриды целенаправленным воспитанием, способствовавшим выработке и закреплению свойства, необходимого селекционеру. Последний метод применяется и в селекции животных.

И в селекции, и в практическом возделывании культурных растений необходимо учитывать то, что сорт только тогда будет проявлять свои положительные свойства, когда растения выращиваются в соответствующих условиях и соблюдаются все требования рациональной агротехники. Нет сортов универсальных для любых территорий, поэтому при районировании того или иного сорта необходимо учитывать условия среды, характерные для данного региона.

Рассмотрим некоторые примеры сортов растений, выведенных учеными-селекционерами.

1. И. В. Мичуриным были получены многие сорта плодово-ягодных культур, например Бельфлер-китайка (яблоки), Бере зимняя Мичурина и Ренет бергамотный (груши), гибрид черемухи и вишни и т.д. В своей селекционной работе он широко использовал все перечисленные методы селекции растений, кроме мутагенеза.

2. Н. В. Цицин (академик) вывел пырейно-пшеничный гибрид.

3. В. С. Пустовойт (академик) получил несколько сортов высокомасличного подсолнечника и т. д.

Особенности селекции животных

Селекция животных - это область науки, изучающая наиболее оптимальные способы выведения пород домашних животных и улучшения существующих пород.

В селекции животных используют все методы селекции, но эти методы имеют свою специфику, связанную с отсутствием у домашних животных способности к бесполому и вегетативному размножению, а также с особенностями получения потомства - у домашних животных достаточно поздно наступает период половой зрелости и потомство относительно немногочисленно.

При выведении новых пород животных большее применение имеет индивидуальный отбор, так как за животными осуществляется более индивидуальный уход, чем за растениями (например, за стадом в 100 голов ухаживает до 10 человек, в то время как поле, на котором произрастают сотни тысяч растений, обслуживает бригада в 5-8 человек).

Важное значение в селекции животных имеет применение гибридизации, при этом используют инбридинг, неродственное скрещивание и отдаленную гибридизацию.

Неродственное скрещивание представляет собой гибридизацию животных, принадлежащих к разным породам одного вида.

Такое скрещивание приводит к «расшатыванию» наследственности и получению организмов с новыми признаками, которые можно в дальнейшем использовать для выведения новой породы или улучшения старой.

Инбридинг у животных применяется в целях, аналогичных инбридингу у растений, только в отличие от самоопыления растений здесь используют осеменение близкородственных организмов (матери, сестры, дочери и т. д.).

Отдаленная гибридизация проводится для получения животных с ценными эксплуатационными свойствами (так скрещивают осла с лошадью, яка с туром). Полученные гибриды, как правило, потомства не дают.

Важную роль играет направленное воспитание, позволяющее развить и закрепить полезное для хозяйственной деятельности свойство животного.

Классическим примером селекции животных является выведение М. Ф. Ивановым белой украинской породы свиней. Эта порода характеризуется высокой продуктивностью и хорошей приспособленностью к местным условиям. Для выведения этой породы использовали местную украинскую породу, хорошо приспособленную к условиям существования в степях, но обладавшую малой продуктивностью и невысоким качеством мяса. Другой породой была английская белая порода, характеризующаяся высокой продуктивностью, но отсутствием приспособленности к существованию в условиях Украины. Были использованы инбридинг, неродственное скрещивание, индивидуально-массовый отбор, воспитание условиями содержания. Длительная и кропотливая работа дала положительный результат - была выведена новая порода свиней - украинская белая свинья, сочетающая в себе качества обоих родительских пород в положительном для хозяйственной деятельности контексте - высокая продуктивность и хорошая приспособленность к местным условиям.

М.Ф.Ивановым с коллегами была проведена большая работа по отдаленной гибридизации, в результате которой выведены архаромериносы (гибрид горного барана - архара и овцы-мериноса), зубробизоны и т. д.

Краткая характеристика особенностей селекции микроорганизмов

Предметом селекции микроорганизмов является выведение новых штаммов микроорганизмов.

Микроорганизмы значительно отличаются от других организмов, применяемых в хозяйственной деятельности человека, поэтому и селекция этих организмов имеет свои отличительные особенности.

1. Малые размеры микроорганизмов обусловливают применение только массового отбора (исключая индивидуальный).

2. Широкое применение находит мутагенез, так как микроорганизмы легко изменяются в результате различных воздействий (химических соединений, излучений).

3. Важнейшим методом селекции микроорганизмов является применение генной инженерии - с помощью специальных методов изменяют структуры генов, либо проводят работы по перекомбинации хромосом; выделяют ДНК, из которой получают рекомбинативную ДНК (полученную из двух разных молекул).

Важно помнить, что работы по генной инженерии очень ответственны с этической точки зрения, ее результаты часто непредсказуемы, их необходимо проводить с предельной тщательностью и осторожностью и не допускать попадания продуктов деятельности генной инженерии в окружающую среду. Для ряда организмов (человека и высших животных) работы по генной инженерии недопустимы.

4. В селекции микроорганизмов, как правило, нельзя использовать скрещивание, так как осуществление этого приема с микроорганизмами вызывает сложности, а целый ряд этих организмов размножается бесполым способом.

Примером работ в области селекции микроорганизмов являются труды С. И. Алиханяна с коллегами по выведению штаммов грибов, вырабатывающих пенициллин.

Важность работ в области селекции микроорганизмов связана с тем, что микроорганизмы являются основой для реализации многих биотехнологических производств.

Биотехнологическими называются производства, в которых получаются сложные органические соединения в результате жизнедеятельности микроорганизмов.

Биотехнология лежит в основе производства гормонов, антибиотиков, энзимов (активных составных частей ферментов), витаминов, чистых белков, природных аминокислот и целого ряда продуктов питания (молочнокислая промышленность, получение глюкозы, этанола, хлебопекарная промышленность, производство пива, уксуса и т. д.).