Уравнение максвелла для пространства имеет вид. Основы теории максвелла для электромагнитного поля

Окна и двери
  • 3.Свободные колебания в lc-контуре. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение.
  • I = dq/dt. (1)
  • Ir = φ1 – φ2 + ec. (2)
  • 4. Вынужденные электрические колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
  • 5. Резонанс напряжений и резонанс токов.
  • Основы теории максвелла для электромагнитного поля.
  • 6.Общая характеристика теории Максвелла. Вихревое магнитное поле. Ток смещения.
  • 7.Уравнения Максвелла в интегральном виде.
  • Электромагнитные волны
  • 8.Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Энергия электромагнитных волн. Давление электромагнитных волн.
  • Геометрическая оптика
  • 9. Основные законы геометрической оптики. Фотометрические величины и их единицы.
  • 10. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
  • 11.Световые волны
  • 12.Интерференция света при отражении от тонких пластинок. Полосы равной толщины и равного наклона.
  • 13. Кольца Ньютона. Применение явления интерференции. Интерферометры. Просветление оптики.
  • 14.Дифракция света
  • 15. Дифракция света на круглом экране и круглом отверстии.
  • 16.Дифракция света на одной щели. Дифракционная решетка.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.
  • 19.Поляризация света. Естественный и поляризованный свет. Степень поляризации. Закон малюса.
  • 20.Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
  • 21. Эффект доплера для световых волн.
  • 22.Тепловое излучение. Свойства равновесного теплового излучения. Абсолютно черное тело. Распределение энергии в спектре абсолютно черного тела. Законы Кирхгофа, Стефана- Больцмана, Вина.
  • 23. Элементы специальной теории относительности Постулаты специальной теории относительности. Преобразования Лоренца.
  • 2. Длительность событий в разных системах отсчета.
  • 24. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
  • Основы теории максвелла для электромагнитного поля.

    6.Общая характеристика теории Максвелла. Вихревое магнитное поле. Ток смещения.

    7.Уравнения Максвелла в интегральном виде.

    Фундаментальные уравнения классической макроскопической электродинамики, описывающей электромагнитные явления в любой среде (и в вакууме) были получены в 60-х гг. 19 века Дж. Максвеллом на основе обобщения эмпирических законов электрических и магнитных явлений и развития идеи англ. ученого М. Фарадея о том, что взаимодействия между электрически заряженными телами осуществляется посредством электромагнитного поля.

    Теория Максвелла для электромагнитного поля связывает величины, характеризующие электромагнитное поле, с его источниками, т.е. распределением в пространстве электрических зарядов и токов.

    Рассмотрим случай электромагнитной индукции. Из закона Фарадея

    Е ин = - ∂Ф m /∂t (1)

    следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и появлению вследствие этого индукционного тока. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла, контур, в котором появляется э.д.с., играет второстепенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.

    Первое уравнение Максвелла в интегральной форме. Согласно определению, э.д.с. равна циркуляции вектора напряженности электрического поля Е :

    Е = ∫dl , (2)

    которая для потенциального поля равна нулю. В общем случае изменяющегося вихревого поля для Е ин получим

    E · dl = - dФ m /dt = -∫(∂B /∂t) dS . (3)

    (3) – первое уравнение Максвелла: циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру L равна взятой с обратным знаком скорости изменения потока вектора магнитной индукции через поверхность, ограниченную данным контуром. Знак « - « соответствует правилу Ленца для направления индукционного тока. Отсюда следует, что переменное магнитное поле создает в пространстве вихревое электрическое поле независимо от того, находится в этом поле проводник (замкнутый проводящий контур) или нет. Полученное таким образом уравнение (3) является обобщением уравнения (2), которое справедливо только для потенциального поля, т.е. электростатического поля.

    Ток смещения и второе уравнение Максвелла в интегральной форме. Максвелл высказал гипотезу, что магнитное поле порождается не только электрическими токами, текущими в проводнике, но и переменными электрическими полями в диэлектриках или вакууме. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения .

    Рассмотрим цепь переменного тока, содержащую конденсатор. Между

    обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники, причем I = I см = ∫j см dS. (*)

    Ток проводимости вблизи обкладок конденсатора можно записать так

    I = dq/dt = (d/dt)∫σ dS = ∫(∂σ/∂t)dS = ∫(∂D/∂t)dS (4)

    (поверхностная плотность заряда σ на обкладках конденсатора равна электрическому смещению D в конденсаторе). Подынтегральное выражение в (4) можно рассматривать как частный случай скалярного произведения (∂D /∂t)dS, когда (∂D /∂t) и dS взаимно параллельны. Поэтому для общего случая можно записать

    I = ∫(∂D /∂t)dS.

    Cравнивая это выражение с (*), имеем

    j см = ∂D / ∂t. (5)

    Выражение(5) Максвелл назвал плотностью тока смещения . Направление вектора плотности тока j и j см совпадает с направлением вектора ∂D /∂t. Ток смещения возбуждает магнитное поле по тому же закону, что и ток проводимости.

    В диэлектриках ток смещения состоит из двух слагаемых. Так как в диэлектрике D = ε 0 E + P , где Е – напряженность электрического поля, а Р – поляризованность, то плотность тока смещения

    j см = ε 0 ∂E / d∂t + ∂P /∂t, (6)

    где ε 0 ∂E / ∂t – плотность тока смещения в вакууме (не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла), ∂P /∂t – плотность тока поляризации – тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах).

    Максвелл ввел понятие полного тока . Полный ток, равный сумме тока смещения и тока проводимости, всегда является замкнутым.

    j полн = j + ∂D /∂t. (7)

    Максвелл обобщил теорему о циркуляции вектора Н , введя в ее правую часть полный ток

    H dl =∫(j + ∂D /d∂t)dS - (8)

    второе уравнение Максвелла : циркуляция вектора напряженности Н магнитного поля по любому замкнутому контуру L равна суммарному току проводимости, который пронизывает поверхность S, натянутую на этот контур, сложенному со скоростью изменения потока вектора электрической индукции D через эту поверхность.

    Повторяю, что переменное магнитное поле может возбуждаться движущимися зарядами (электрическими токами) и переменным электрическим полем (током смещения).

    Третье и четвертое уравнения Максвелла. Третье уравнение Максвелла выражает опытные данные об отсутствии магнитных зарядов, аналогичных электрическим (магнитное поле порождается только электрическими токами), т.е. теорема Гаусса оказалась справедливой не только для электро- и магнитостатических полей, но и для переменного во времени вихревого электромагнитного поля:

    D dS = q, (9)

    B dS = 0. (10)

    Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных. Величины, входящие в уравнение Максвелла, не являются независимыми и между ними сущ. следующая связь:

    D = D(E ), B = B (H ), j = j(E ). (11)

    Эти уравнения наз. уравнениями состояния или материальными уравнениями , они описывают электромагнитные свойства среды и для каждой конкретной среды имеют определенную форму.

    Интегральные уравнения Максвелла описывают среду феноменологически, не рассматривая сложного механизма взаимодействия электромагнитного поля с заряженными частицами среды.

    От интегральных уравнений Максвелла (3), (8-10) можно перейти к системе дифференциальных уравнений. Четыре фундаментальных ур. Максвелла в интегральной или дифференциальной формах не образуют полной замкнутой системы, позволяющей рассчитывать электромагнитные процессы при наличии материальной среды. Их необходимо дополнить соотношениями, связывающими векторы E , H , D , B и j , которые не являются независимыми. Связь между ними определяется свойствами среды и ее состоянием. Электромагнитные свойства среды определяются уравнениями, которые в общем случае очень сложны, однако в случае изотропной однородной проводящей неферромагнитной и несегнетоэлектрической среды имеют вид

    D = εε 0 E , B = μμ 0 H , j = γE . (12)

    Уравнения (3), (8-10) и (12) образуют полную систему уравнений электромагнитного поля в среде, решение которой при заданных граничных условиях позволяет определить векторы E , H , D , B и j и скаляр ρ (плотность распределения эл. зарядов в пространстве) в каждой точке среды с заданными ее характеристиками ε, μ, σ.

    Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с им магнитным, т.е. электрическое и магнитное поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле . Статика, Е = const, B = const. !!!

    Теория Максвелла не только смогла объяснить уже известные экспериментальные факты, но и предсказала новые явления. Одним из важных выводов этой теории явилось существование магнитного поля токов смещения, что позволило Максвеллу предсказать существование электромагнитных волн – переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. Это привело Максвелла к созданию электромагнитной теории света.

    Уравнения Максвелла описывают огромную область явлений. Они лежат в основе электротехники и радиотехники и играют важную роль в развитии таких актуальных направлений современной физики, как физика плазмы и проблема управляемого термоядерного синтеза, магнитная гидродинамика, нелинейная оптика, астрофизика и т.д.

    Уравнения Максвелла неприменимы лишь при больших частотах электромагнитных волн, когда становятся существенными квантовые эффекты, т.е. когда энергия отдельных квантов электромагнитного поля – фотонов- велика и в процессах участвует небольшое число фотонов.

    В случае стационарных (то есть неменяющихся во времени) электрического и магнитного полей, происхождение которых связано с покоящимися зарядами для электрического поля и со стационарными токами для магнитного поля, эти поля являются независимыми друг от друга, что позволяет рассматривать их отдельно друг от друга.

    Уравнения Максвелла – это система уравнений, описывающих природу происхождения и свойства электрического и магнитного полей.

    Уравнения Максвелла для стационарных полей:

    Таким образом, уравнения Максвелла для стационарных полей :

    I.; II. ;

    III.; IV. .

    Векторные характеристики электростатического поля исвязаны между собой следующим соотношением:


    ,

    где – электрическая постоянная, диэлектрическая проницаемость среды.

    Векторные характеристики магнитного поля и связаны между собой следующим соотношением:


    ,

    где – магнитная постоянная, магнитная проницаемость среды.

    Тема 8. Уравнения Максвелла для электромагнитного поля

    Согласно теории Максвелла для электромагнитного поля в случае нестационарных (то есть, изменяющихся во времени) электрического и магнитного полей, источниками электрического поля могут быть либо электрические заряды, либо изменяющееся во времени магнитное поле, а источниками магнитного поля могут быть либо движущиеся электрические заряды (электрические токи), либо переменное электрическое поле.

    В отличие от стационарных полей переменные электрическое и магнитное поля не являются независимыми друг от друга и рассматриваются как электромагнитное поле.

    Уравнения Максвелла, как система уравнений, описывающих природу происхождения и свойства электрического и магнитного полей в случае электромагнитного поля имеет вид:

    I .

    , то есть циркуляция вектора напряженности электрического поля определяется скоростью изменения вектора индукции магнитного поля (  скорость изменения вектора индукции ).

    Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

    II .

    , то есть поток вектора электрического смещения через произвольную замкнутую поверхностьS , равен алгебраической сумме зарядов, заключенных внутри объема V , ограниченного данной замкнутой поверхностью S (  объемная плотность заряда).

    III .

    , то есть циркуляция вектора напряженности по произвольному замкнутому контуруL определяется полным током I полн. , пронизывающим поверхность S , ограниченную данным контуром L .


    полный ток I полн , складывающийся из тока проводимости I и тока смещения I см. , то есть I полн. = I + I см. .

    Суммарный ток проводимости I определяется в общем случаечерез поверхностную плотность тока j (

    )интегрированием, то есть


    .

    Ток смещения I см ,пронизывающий поверхность S , определяется в общем

    случаечерез поверхностную плотность тока смещения

    (

    ) интегрированием, то есть:

    .

    Введенное Максвеллом понятие «тока смещения», величина которого определяется скоростью изменения вектора электрического смещения , то есть величиной , показывает, что магнитные поля могут возбуждаться не только движущими­ся зарядами (электрическими токами проводимости), но и переменными электрическими полями.

    IV .

    , то есть поток вектора индукциимагнитного поля через произвольную замкнутую поверхность S равен нулю.

    В основе теории Максвелла лежат рас­смотренные четыре уравнения:

    1. Электрическое поле мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю, а циркуляция вектора Е B оп­ределяется выражением, то цир­куляция вектора напряженности суммар­ного поляЭто уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

    2. Обобщенная теорема о циркуляции вектора Н : Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами, либо переменными электрическими полями.

    3. Теорема Гаусса для поля D : Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью, то формула запишется в виде

    4. Теорема Гаусса для поля В: Итак,полная система уравнений Максвел­ла в интегральной форме: Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь:D = 0 E , В=  0 Н, j =E , где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

    Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

    Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса можно представитьполную систему урав­нений Максвелла в дифференциальной форме :

    Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

    66. Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны.

    Для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа:


    -оператор Лапласа.

    Т.е. электро­магнитные поля могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением (1) v - фазовая ско­рость, где с= 1/ 0  0 ,  0 и  0 - соответственно электрическая и магнитная постоянные,  и  - соответственно электрическая и магнитная проницаемости среды.

    В вакууме (при =1 и =1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как > 1, то скорость распространения электро­магнитных волн в веществе всегда мень­ше, чем в вакууме.

    При вычислении скорости распростра­нения электромагнитного поля по формуле (1) получается результат, достаточно хорошо совпадающий с эксперименталь­ными данными, если учитывать зависи­мость  и , от частоты. Совпадение же размерного коэффициента в со скоростью распространения света в вакуу­ме указывает на глубокую связь между электромагнитными и оптическими явле­ниями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электро­магнитные волны.

    Следствием теории Максвелла являет­ся поперечность электромагнитных волн: векторыЕ и Н напряженностей электриче­ского и магнитного полей волны взаимно перпендикулярны (рис. 227) и лежат в плос­кости, перпендикулярной вектору v скоро­сти распространения волны, причем векто­ры Е , Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне век­торы Е и Н всегда колеблются в одина­ковых фазах (см. рис. 227), причем мгно­венные значения £ и Я в любой точке связаны соотношением  0 = 0 Н. (2)

    Этим уравнениям удов­летворяют, в частности, плоскиемонохро­матические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями Е у 0 cos(t-kx+), (3) H z = H 0 cos (t-kx+), (4), где е 0 и Н 0 - соответственно амплитуды напряженностей электрического и магнит­ного полей волны,  - круговая частота волны, k=/v- волновое число, - начальные фазы колебаний в точках с ко­ординатой х= 0. В уравнениях (3) и (4)  одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой.