Уравнения максвелла являются основными законами классической. Принцип действия

Окна и двери

Уравнения Максвелла — система дифференциальных уравнений, описывающих электромагнитное поле и его связь сэлектрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца образуют полную систему уравнений классической электродинамики . Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее, влияние не только на все области физики, непосредственно связанные с электромагнетизмом , но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности).

Содержание [убрать] 1. История 2. Запись уравнений Максвелла и системы единиц 3. Дифференциальная форма 4. Интегральная форма 5. Сила Лоренца 6. Размерные константы в уравнениях Максвелла 7. Уравнения Максвелла в среде 7.1 Связанные заряды и токи 7.2 Материальные уравнения 7.3 Уравнения в изотропных и однородных средах без дисперсии o 7.4 Граничные условия 8. Законы сохранения 8.1 Уравнение непрерывности o 8.2 Закон сохранения энергии 9. Потенциалы 9.1 Скалярный и векторный потенциалы 9.2 Векторы Герца 9.3 Потенциалы Дебая 9.4 Векторы Римана — Зильберштейна 10. Ковариантная формулировка o 10.1 Четырёхмерные векторы 10.2 Тензор электромагнитного поля o 10.3 Лагранжиан 10.4 Запись при помощи дифференциальных форм 10.5 Общековариантная запись в компонентах 11. Спектральное представление 12. Уравнения без свободных зарядов и токов 12.1 Волновое уравнение 12.2 Уравнение Гельмгольца 13. Некоторые точные решения 13.1 Поле движущегося точечного заряда 13.2 Плоские электромагнитные волны 14. Связь с другими теориями 15. Аксиоматический подход 16. Единственность решений уравнений Максвелла 17. Численное решение уравнений Максвелла 18. Источники 19. Примечания 20. См. также 21. Литература 21.1 Исторические публикации 21.2 История развития 21.3 Общие курсы физики 21.4 Курсы теоретической физики 21.5 Решения уравнений Максвелла 22. Ссылки

История

Уравнения, сформулированные Джеймсом Клерком Максвеллом, возникли на основе ряда важных экспериментальных открытий, которые были сделаны в начале XIX века. В 1820 году Ганс Христиан Эрстед обнаружил, что пропускаемый через проводгальванический ток заставляет отклоняться магнитную стрелку компаса. Это открытие привлекло широкое внимание учёных того времени. В том же 1820 году Био и Савар экспериментально нашли выражение для порождаемой током магнитной индукции (закон Био-Савара ), и Андре Мари Ампер обнаружил, чтовзаимодействие на расстоянии возникает также между двумя проводниками, по которым пропускается ток. Ампер ввёл термин «электродинамический» и выдвинул гипотезу, что природный магнетизм связан с существованием в магните круговых токов.

Влияние тока на магнит, обнаруженное Эрстедом, привело Майкла Фарадея к идее о том, что должно существовать обратное влияние магнита на токи. После длительных экспериментов, в 1831 году, Фарадей открыл, что перемещающийся возле проводника магнит порождает в проводнике электрический ток. Это явление было названо электромагнитной индукцией. Фарадей ввёл понятие «поля сил» — некоторой среды, находящейся между зарядамии токами. Его рассуждения носили качественный характер, однако они оказали огромное влияние на исследования Максвелла.

После открытий Фарадея стало ясно, что старые модели электромагнетизма (Ампер, Пуассон и др.) неполны. Вскоре появилась теория Вебера, основанная на дальнодействии. Однако к этому моменту вся физика, кроме теории тяготения, имела дело только с близкодейственными силами (оптика, термодинамика, механика сплошных сред и др.). Гаусс, Риман и ряд других учёных высказывали догадки, что свет имеет электромагнитную природу, так что теория электромагнитных явлений тоже должна быть близкодейственной. Этот принцип стал существенной особенностью теории Максвелла.

В своём знаменитом «Трактате об электричестве и магнетизме» (1873) Максвелл писал:

"Приступая к изучению труда Фарадея, я установил, что его метод понимания явлений был так же математическим, хотя и не представленным в форме обычных математических символов. Я также нашёл, что этот метод можно выразить в обычной математической форме и таким образом сравнить с методами профессиональных математиков".

Заменяя фарадеевский термин «поле сил» на понятие «напряжённость поля», Максвелл сделал его ключевым объектом своей теории:

Если мы примем эту среду в качестве гипотезы, я считаю, что она должна занимать выдающееся место в наших исследованиях, и что нам следовало бы попытаться сконструировать рациональное представление о всех деталях её действия, что и было моей постоянной целью в этом трактате.

Подобная электродинамическая среда явилась абсолютно новым понятием для ньютоновской физики. Последняя изучала взаимодействие между собой материальных тел. Максвелл же записал уравнения, которым должна подчиняться среда, определяющая взаимодействие зарядов и токов и существующая даже в их отсутствие.

Электрический ток создаёт магнитную индукцию (закон Ампера )

Анализируя известные эксперименты, Максвелл получил систему уравнений для электрического и магнитного полей. В 1855 году в своей самой первой статье «О фарадеевых силовых линиях» («On Faraday’s Lines of Force») он впервые записал в дифференциальной форме систему уравнений электродинамики, но не вводя ещё ток смещения. Такая система уравнений описывала все известные к тому времени экспериментальные данные, но не позволяла связать между собой заряды и токи и предсказатьэлектромагнитные волны. Впервые ток смещения был введён Максвеллом в работе «О физических силовых линиях» («On Physical Lines of Force»), состоящей из четырёх частей и опубликованной в 1861-1862 годах.

Обобщая закон Ампера, Максвелл вводит ток смещения, вероятно, чтобы связать токи и заряды уравнением непрерывности, которое уже было известно для других физических величин. Следовательно, в этой статье фактически была завершена формулировка полной системы уравнений электродинамики. В статье 1864 года «Динамическая теория электромагнитного поля» («A dynamical theory of the electromagnetic field») рассмотрена сформулированная ранее система уравнений из 20 скалярных уравнений для 20 скалярных неизвестных. В этой статье Максвелл впервые сформулировал понятие электромагнитного поля как физической реальности, имеющей собственную энергию и конечное время распространения, определяющее запаздывающий характер электромагнитного взаимодействия.

Переменный поток магнитного поля создаёт электрическое поле (закон Фарадея )

Оказалось, что не только ток, но и изменяющееся со временем электрическое поле (ток смещения) порождаетмагнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света.

Часть физиков выступила против теории Максвелла (особенно много возражений вызвала концепция тока смещения). Гельмгольц предложил свою теорию, компромиссную по отношению к моделям Вебера и Максвелла, и поручил своему ученику Генриху Герцу провести её экспериментальную проверку. Однако опыты Герца однозначно подтвердили правоту Максвелла.

Максвелл не использовал векторных обозначений и записывал свои уравнения в достаточно громоздком компонентном виде. В своём трактате он, кроме того, частично использовалкватернионную формулировку. Современная форма уравнений Максвелла появилась около 1884 года после работ Хевисайда, Герца и Гиббса. Они не только переписали систему Максвелла в векторном виде, но и симметризовали её, переформулировав в терминах поля, избавившись отэлектрического и магнитного потенциалов, игравших в теории Максвелла существенную роль, поскольку полагали, что эти функции являются лишь ненужными вспомогательными математическими абстракциями. Интересно, что современная физика поддерживает Максвелла, но не разделяет негативное отношение его ранних последователей к потенциалам.Электромагнитный потенциал играет важную роль в квантовой физике и проявляется как физически измеряемая величина в некоторых экспериментах, например, в эффекте Ааронова-Бома.

Система уравнений в формулировке Герца и Хевисайда некоторое время называлась уравнениями Герца-Хевисайда. Эйнштейн в классической статье «К электродинамике движущихся тел» назвал их уравнениями Максвелла-Герца. Иногда в литературе встречается также название уравнения Максвелла-Хевисайда.

Уравнения Максвелла сыграли важную роль при возникновении специальной теории относительности (СТО). Джозеф Лармор (1900 год) и независимо от него Хенрик Лоренц (1904 год) нашли преобразования координат, времени и электромагнитных полей, которые оставляют уравнения Максвелла инвариантными при переходе от одной инерциальной системы отсчёта к другой. Эти преобразования отличались от преобразований Галилея классической механики и, следуя Анри Пуанкаре, стали называться преобразованиями Лоренца. Они стали математическим фундаментом специальной теории относительности.

Распространение электромагнитных волн со скоростью света первоначально интерпретировалось как возмущения некоторой среды, так называемого эфира. Были предприняты многочисленные попытки (см. исторический обзор) обнаружить движение Земли относительно эфира, однако они неизменно давали отрицательный результат. Поэтому Анри Пуанкаре высказал гипотезу о принципиальной невозможности обнаружить подобное движение (принцип относительности). Ему же принадлежит постулат о независимости скорости света от скорости его источника и вывод (вместе с Лоренцем), исходя из сформулированного так принципа относительности, точного видапреобразований Лоренца (при этом были показаны и групповые свойства этих преобразований).

Эти две гипотезы (постулата) легли и в основу статьи Альберта Эйнштейна (1905 год). С их помощью он также вывел преобразования Лоренца и утвердил их общефизический смысл, особо подчеркнув возможность их применения для перехода из любой инерциальной системы отсчета в любую другую инерциальную. Эта работа фактически ознаменовала собой построение специальной теории относительности. В СТО преобразования Лоренца отражают общие свойства пространства и времени, а модель эфира оказывается ненужной. Электромагнитные поля являются самостоятельными объектами, существующими наравне с материальными частицами.

Классическая электродинамика, основанная на уравнениях Максвелла, лежит в основе многочисленных приложений электро- и радиотехники, СВЧ и оптики. До настоящего времени не было обнаружено ни одного эффекта, который потребовал бы видоизменения уравнений. Они оказываются применимы и в квантовой механике, когда рассматривается движение, например, заряженных частиц во внешних электромагнитных полях. Поэтому уравнения Максвелла являются основой микроскопического описания электромагнитных свойств вещества.

Уравнения Максвелла востребованы также в астрофизике и космологии, поскольку многие планетыи звезды обладают магнитным полем. Магнитное поле определяет, в частности, свойства таких объектов, как пульсары и квазары.

На современном уровне понимания все фундаментальные частицы являются квантовыми возбуждениями («квантами») различных полей. Например, фотон — это квант электромагнитного поля, а электрон — квант спинорного поля. Поэтому полевой подход, предложенный Фарадеем и существенно развитый Максвеллом, является основой современной физики фундаментальных частиц, в том числе ее стандартной модели.

Исторически несколько раньше он сыграл важную роль в появлении квантовой механики в формулировке Шрёдингера и вообще открытии квантовых уравнений, описывающих движение частиц, в том числе и релятивистских (уравнение Клейна-Гордона, уравнение Дирака), хотя первоначально аналогия с уравнениями Максвелла здесь виделась скорее лишь в общей идее, тогда как впоследствии оказалось, что она может быть понята как более конкретная и детальная (как это описано выше).

Также полевой подход, в целом восходящий к Фарадею и Максвеллу, стал центральным в теории гравитации (включая ОТО).

Запись уравнений Максвелла и системы единиц

Запись большинства уравнений в физике не зависит от выбора системы единиц. Однако в электродинамике это не так. В зависимости от выбора системы единиц в уравнениях Максвелла возникают различные коэффициенты (константы). Международная система единиц СИ является стандартом в технике и преподавании, однако споры среди физиков о её достоинствах и недостатках по сравнению с конкурирующей симметричной гауссовой системой единиц (СГС) не утихают. Преимущество системы СГС в электродинамике состоит в том, что все поля в ней имеют одну размерность, а уравнения, по мнению многих учёных, записываются проще и естественней.

Поэтому СГС продолжает применяться в научных публикациях по электродинамике и в преподавании теоретической физики, например, в курсе теоретической физики Ландау и Лифшица . Однако для практических применений вводимые в СГС единицы измерений, многие из которых неименованы и неоднозначны, часто неудобны. Система СИ стандартизована и лучше самосогласованна, на этой системе построена вся современная метрология. Кроме того, система СИ обычно используется в курсах общей физики. В связи с этим все соотношения, если они по-разному записываются в системах СИ и СГС, далее приводятся в двух вариантах.

Дифференциальная форма

Уравнения Максвелла представляют собой в векторной записи систему из четырех уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных) линейных дифференциальных уравнений в частных производных 1-го порядка для 12 компонент четырёх векторных функций ():

Название СГС СИ Примерное словесное выражение
Закон Гаусса Электрический заряд является источником электрической индукции.
Закон Гаусса для магнитного поля Не существуетмагнитных зарядов. [~ 1]
Закон индукции Фарадея Изменение магнитной индукции порождает вихревое электрическое поле. [~ 1]
Теорема о циркуляции магнитного поля Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Жирным шрифтом в дальнейшем обозначаются векторные величины, курсивом — скалярные.

Введённые обозначения:

— плотность стороннего электрического заряда (в единицах СИ — Кл/м³);

— плотность электрического тока (плотность тока проводимости) (в единицах СИ — А/м²); в простейшем случае - случае тока, порождаемого одним типом носителей заряда, она выражается просто как , где — (средняя) скорость движения этих носителей в окрестности данной точки, ρ 1 - плотность заряда этого типа носителей (она в общем случае не совпадает с ρ); в общем случае это выражение надо усреднить по разным типам носителей;

— скорость света в вакууме (299 792 458 м/с);

— напряжённость электрического поля (в единицах СИ — В/м);

— напряжённость магнитного поля (в единицах СИ — А/м);

— электрическая индукция (в единицах СИ — Кл/м²);

— магнитная индукция (в единицах СИ — Тл = Вб/м² = кг.с −2 .А −1);

— дифференциальный оператор набла, при этом:

Означает ротор вектора,

Означает дивергенцию вектора.

Приведённые выше уравнения Максвелла не составляют ещё полной системы уравненийэлектромагнитного поля, поскольку они не содержат свойств среды, в которой возбужденоэлектромагнитное поле. Соотношения, связывающие величины , , , и и учитывающие индивидуальные свойства среды, называются материальными уравнениями.

Интегральная форма

При решении уравнений Максвелла распределения зарядов и токов часто считаются заданными. С учётом граничных условий и материальных уравнений это позволяет определить напряжённость электрического поля и магнитную индукцию , которые, в свою очередь, определяют силу, действующую на пробный заряд , двигающийся со скоростью .

Эта сила называется силой Лоренца :

СГС СИ

Электрическая составляющая силы направлена по электрическому полю (если ), а магнитная — перпендикулярна скорости заряда и магнитной индукции. Впервые выражение для силы, действующей на заряд в магнитном поле (электрическая компонента была известна), получил в 1889 году Хевисайд за три года до Хендрика Лоренца, который вывел выражение для этой силы в 1892 году.

В более сложных ситуациях в классической и квантовой физике в случае, когда под действием электромагнитных полей свободные заряды перемещаются и изменяют значения полей, необходимо решение самосогласованной системы из уравнений Максвелла и уравнений движения, включающих силы Лоренца. Получение точного аналитического решения такой полной системы сопряжено обычно с большими сложностями.

Размерные константы в уравнениях Максвелла

В гауссовой системе единиц СГС все поля имеют одинаковую размерность, и в уравнениях Максвелла фигурирует единственная фундаментальная константа , имеющая размерностьскорости, которая сейчас называется скоростью света (именно равенство этой константы скорости распространения света дало Максвеллу основания для гипотезы об электромагнитной природе света).

В системе единиц СИ, чтобы связать электрическую индукцию и напряжённость электрического поля в вакууме , вводится электрическая постоянная ε 0 (). Магнитная постоянная является таким же коэффициентом пропорциональности для магнитного поля в вакууме (). Названия электрическая постоянная и магнитная постоянная сейчас стандартизованы. Ранее для этих величин также использовались, соответственно, названия диэлектрическая и магнитная проницаемости вакуума.

Скорость электромагнитного излучения в вакууме (скорость света) в СИ появляется при выводеволнового уравнения:

В системе единиц СИ, в качестве точных размерных констант определены скорость света в вакууме и магнитная постоянная . Через них выражается электрическая постоянная ε 0 .

Принятые значения скорости света, электрической и магнитной постоянных приведены в таблице:

Иногда вводится величина, называемая «волновым сопротивлением», или «импедансом» вакуума:

Ом.

Приближённое значение для получается, если для скорости света принять значение м/c. В системе СГС . Эта величина имеет смысл отношения амплитуд напряжённостей электрического и магнитного полей плоской электромагнитной волны в вакууме.

Уравнения Максвелла в среде

Чтобы получить полную систему уравнений электродинамики, к системе уравнений Максвелла необходимо добавить материальные уравнения, связывающие величины , , , , , в которых учтены индивидуальные свойства среды. Способ получения материальных уравнений дают молекулярные теории поляризации, намагниченности и электропроводности среды, использующие идеализированные модели среды. Применяя к ним уравнения классической иликвантовой механики, а также методы статистической физики, можно установить связь между векторами , , с одной стороны и , с другой стороны.

Связанные заряды и токи

Слева : Совокупность микроскопических диполей в среде образуют один макроскопический дипольный момент и эквивалентны двум заряженным с противоположным знаком пластинам на границе. При этом внутри среды все заряды скомпенсированы;

Справа : Совокупность микроскопических циркулярных токов в среде эквивалентна макроскопическому току, циркулирующему вдоль границы. При этом внутри среды все токи скомпенсированы.

При приложении электрического поля кдиэлектрическому материалу каждая из его молекул превращается в микроскопическийдиполь. При этом положительные ядра атомов немного смещаются в направлении поля, а электронные оболочки в противоположном направлении. Кроме этого, молекулы некоторых веществ изначально имеют дипольный момент. Дипольные молекулы стремятся ориентироваться в направлении поля. Этот эффект называетсяполяризацией диэлектриков. Такое смещение связанных зарядов молекул в объёме эквивалентно появлению некоторого распределения зарядов на поверхности, хотя все молекулы, вовлечённые в процесс поляризации остаются нейтральными (см. рисунок).

Аналогичным образом происходит магнитная поляризация (намагнивание) в материалах, в которых составляющие их атомы и молекулы имеютмагнитные моменты, связанные со спином и орбитальным моментом ядер и электронов. Угловые моменты атомов можно представить в виде циркулярных токов. На границе материала совокупность таких микроскопических токов эквивалентна макроскопическим токам, циркулирующим вдоль поверхности, несмотря на то, что движение зарядов в отдельных магнитных диполях происходит лишь в микромасштабе (связанные токи).

Рассмотренные модели показывают, что хотя внешнее электромагнитное поле действует на отдельные атомы и молекулы, его поведение во многих случаях можно рассматривать упрощённым образом в макроскопическом масштабе, игнорируя детали микроскопической картины.

В среде сторонние электрические и магнитные поля вызывают поляризацию и намагничивание вещества, которые макроскопически описываются соответственно вектором поляризации ивектором намагниченности вещества, а вызваны появлением связанных зарядов и токов . В результате поле в среде оказывается суммой внешних полей и полей, вызванных связанными зарядами и токами.

Поэтому, выражая векторы и через , , и , можно получить математически эквивалентную систему уравнений Максвелла:

СГС СИ

Индексом здесь обозначены свободные заряды и токи. Уравнения Максвелла в такой форме являются фундаментальными, в том смысле, что они не зависят от модели электромагнитного устройства вещества. Разделение зарядов и токов на свободные и связанные позволяет «спрятать» в , , а затем в и, следовательно, в сложный микроскопический характер электромагнитного поля в среде.

Материальные уравнения

Материальные уравнения устанавливают связь между и . При этом учитываются индивидуальные свойства среды. На практике в материальных уравнениях обычно используются экспериментально определяемые коэффициенты (зависящие в общем случае от частоты электромагнитного поля), которые собраны в различных справочниках физических величин.

В слабых электромагнитных полях, сравнительно медленно меняющихся в пространстве и вовремени, в случае изотропных, неферромагнитных и несегнетоэлектрических сред справедливо приближение, в котором поляризуемость и намагниченность линейно зависят от приложенных полей:

СГС СИ

где введены безразмерные константы: — диэлектрическая восприимчивость и —магнитная восприимчивость вещества (в системе единиц СИ эти константы в раз больше, чем в гауссовой системе СГС). Соответственно, материальные уравнения для электрической и магнитной индукций записываются в следующем виде:

СГС СИ

где — относительная диэлектрическая проницаемость, — относительная магнитная проницаемость. Размерные величины ε 0 ε (в единицах СИ — Ф/м) и μ 0 μ (в единицах СИ — Гн/м), возникающие в системе СИ, называются абсолютная диэлектрическая проницаемость иабсолютная магнитная проницаемость соответственно.

В проводниках существует связь между плотностью тока и напряжённостью электрического поля, выражаемая законом Ома :

где — удельная проводимость среды (в единицах СИ — Ом −1 .м −1).

В анизотропной среде ε, и являются тензорами , и . В системе координат главных осей они могут быть описаны диагональными матрицами. В этом случае, связь между напряжённостями полей и индукциями имеют различные коэффициенты по каждой координате.

Например, в системе СИ:

Хотя для широкого класса веществ линейное приближение для слабых полей выполняется с хорошей точностью, в общем случае зависимость между и может быть нелинейной. В этом случае проницаемости среды не являются константами, а зависят от величины поля в данной точке. Кроме того, более сложная связь между и наблюдается в средах с пространственной или временной дисперсиями. В случае пространственной дисперсии токи и заряды в данной точке пространства зависят от величины поля не только в той же точке, но и в соседних точках. В случае временной дисперсии поляризация и намагниченность среды не определяются только величиной поля в данный момент времени, а зависят также от величины полей в предшествующие моменты времени. В самом общем случае нелинейных и неоднородных сред с дисперсией, материальные уравнения в системе СИ принимают интегральный вид:

Аналогичные уравнения получаются в гауссовой системе СГС (если формально положить ε 0 = 1).

Уравнения в изотропных и однородных средах без дисперсии

В изотропных и однородных средах без дисперсии уравнения Максвелла принимают следующий вид :

СГС СИ

В оптическом диапазоне частот вместо диэлектрической проницаемости ε используется показатель преломления (зависящий от длины волны), показывающий отличие скорости распространения монохроматической световой волны в среде от скорости света в вакууме. При этом в оптическом диапазоне диэлектрическая проницаемость обычно заметно меньше чем на низких частотах, а магнитная проницаемость большинства оптических сред практически равна единице. Показатель преломления большинства прозрачных материалов составляет от 1 до 2, достигая 5 у некоторых полупроводников. В вакууме и диэлектрическая, и магнитная проницаемости равны единице: ε = μ = 1.

Поскольку уравнения Максвелла в линейной среде являются линейными относительно полей и свободных зарядов и токов , справедлив принцип суперпозиции:

Если распределения зарядов и токов создают электромагнитное поле с компонентами , а другие распределения создают, соответственно, поле , то суммарное поле, создаваемое источниками , будет равно .

При распространении электромагнитных полей в линейной среде в отсутствие зарядов и токовсумма любых частных решений уравнений будет также удовлетворять уравнениям Максвелла.

Граничные условия

Во многих случаях неоднородную среду можно представить в виде совокупности кусочно-непрерывных однородных областей, разделённых бесконечно тонкими границами. При этом можно решать уравнения Максвелла в каждой области, «сшивая» на границах получающиеся решения. В частности, при рассмотрении решения в конечном объёме необходимо учитывать условия на границах объёма с окружающим бесконечным пространством. Граничные условия получаются из уравнений Максвелла предельным переходом. Для этого проще всего воспользоваться уравнениями Максвелла в интегральной форме.

Выбирая во второй паре уравнений контур интегрирования в виде прямоугольной рамки бесконечно малой высоты, пересекающей границу раздела двух сред, можно получить следующую связь между компонентами поля в двух областях, примыкающих к границе:

СГС СИ
, , , ,

где — единичный вектор нормали к поверхности, направленный из среды 1 в среду 2 и имеющий размерность, обратную длине, — плотность поверхностных свободных токов вдоль границы (то есть не включая связанных токов намагничивания, складывающихся на границе среды из микроскопических молекулярных итп токов). Первое граничное условие можно интерпретировать как непрерывность на границе областей тангенциальных компонент напряжённостей электрического поля (из второго следует, что тангенциальные компоненты напряжённости магнитного поля непрерывны только при отсутствии поверхностных токов на границе).

Введение представлений о токе смещения позволило Максвеллу создать теорию, описывающую с единых позиций всю совокупность электрических и магнитных явлений. Эта теория не только объяснила все известные к тому времени факты, но и позволила предсказать явления, еще не подтвержденные в опыте. Наиболее существенным результатом теории было предсказание электромагнитных волн, распространяющихся со скоростью света, а также создание электромагнитной теории света.

Все разнообразие электрических и магнитных явлений Максвелл описал с помощью четырех фундаментальных уравнений.

Первое уравнение Максвелла (4.4) выражает закон электромагнитной индукции. В левой части уравнения под интегралом вихревое электрическое поле Е м можно в общем случае заменить суммарным электрическим полем Е, равным Е q + E м, где Е q – электростатическое поле неподвижных зарядов. Такая замена не меняет значения интеграла, так как согласно (1.28) циркуляция напряженности электростатического поля Е q равна нулю. Тогда уравнение примет окончательный вид:

= (4.12) Второе уравнение Максвелла (4.11) обобщает теорему о циркуляции вектора Н с учетом тока смещения. Воспроизведем его снова

Оно показывает, что источниками магнитного поля могут быть как движущиеся заряды (токи проводимости), так и переменные электрические поля.

Еще два уравнения выражают теорему Гаусса для электрического и магнитного полей. Согласно теореме Гаусса для вектора электрической индукции D поток этого вектора через любую замкнутую поверхность S равен суммарному заряду, заключенному внутри этой замкнутой поверхности.

В общем случае, когда заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью ρ, то эта формула приобретает вид:

(4.14)

Интеграл в правой части (4.14) берется по всему объему V, заключенному внутри замкнутой поверхности S. Это уравнение показывает, что источником электрического поля могут быть электрические заряды.

Теорема Гаусса для индукции магнитного поля утверждает, что поток вектора В через любую замкнутую поверхность равен нулю.

Это уравнение указывает на замкнутость линий магнитной индукции, то есть на отсутствие источников, на которых бы эти линии начинались или оканчивались. Все четыре уравнения Максвелла (4.12) – (4.15) записаны в интегральной форме.

Итак, полная система уравнений Максвелла в интегральной форме имеет вид:



Входящие в эти уравнения величины D, E, B, H, j не являются независимыми, поэтому к четырем перечисленным уравнением следует добавить еще три так называемые материальные уравнения, связывающие названные величины между собой, с учетом свойств материальной среды (эти свойства отображены параметрами ε, μ, σ).

D = ε 0 εE

B = μ 0 μH

j = σE

Из теории Максвелла, представленной этими уравнениями, вытекает неразрывная связь изменений электрического и магнитного полей: меняющееся электрическое поле порождает изменяющееся магнитное, в свою очередь меняющее магнитное поле порождает изменяющееся электрическое. Таким образом, переменные электрические и магнитные поля неразрывно связаны друг с другом и образуют единое электромагнитное поле.

Согласно принципу относительности Эйнштейна все электромагнитные явления во всех инерциальных системах отсчета протекают одинаково и описываются одинаковыми уравнениями. Преобразования Лоренца не меняют вид уравнений Максвелла, хотя конкретные величины Е, В, D, Н определенным образом меняются и преобразуются одна в другую (см., например, формулы (3.8)). Исходя из этого, можно утверждать, что отдельное рассмотрение электрического и магнитного полей относительно и обусловлено конкретной системой отсчета. Инвариантными свойствами обладает единое электромагнитное поле.

Введение Максвеллом понятия тока смещения, привело к завершению созданной им макроскопической теории электромагнитного поля, которая позволяет с единой точки зрения объяснить не только электрические и магнитные явления, но и предсказать новые, существования которых было впоследствии подтверждено.

В основе теории Максвелла лежат 4 уравнения:

1. Электрическое поле может быть как потенциальным, так и вихревым, поэтому напряженность результирующего поля равна:

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля :

Получаем

Итак, полная система уравнений Максвелла в интегральной форме:

1),

2),

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует связь.

Для изотропных, несегнетоэлектрических и неферромагнитных сред запишем формулы связи:

б) ,

в) ,

где - электрическая постоянная, - магнитная постоянная,

Диэлектрическая проницаемость среды, m - магнитная проницаемость среды,

r - удельное электрическое сопротивление, - удельная электрическая проводимость.

Из уравнений Максвелла вытекает, что:

источником электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, которые могут возбуждаться либо движущимися электрическими зарядами (токами), либо переменными электрическими полями.

Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе не существует магнитных зарядов.

Если и (стационарные поля), то уравнения Максвелла принимают следующий вид:

Источниками электрического стационарного поля являются только электрические заряды, источниками стационарного магнитного поля - только токи проводимости.

Электрическое и магнитное поле в данном случае независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.

Дифференциальная форма записи уравнений Максвелла:

3) ,

Интегральная форма записи уравнений Максвелла является более общей, если имеются поверхности разрыва. Дифференциальная форма записи уравнения Максвелла предполагает, что все величины в пространстве и времени изменяются непрерывно.

Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же важную роль, как и законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с переменным электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным полем, т.е. электрическое и магнитное поле неразрывно связаны друг с другом – они образуют единое электромагнитное поле.

Свойства уравнений Максвелла

Уравнения Максвелла линейны. Они содержат только первые производные полей Е и В по времени и пространственным координатам и первые степени плотности электрических зарядов и токов j . Свойство линейности уравнений Максвелла связано с принципом суперпозиции, если два каких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и к сумме этих полей.

Уравнения Максвелла содержат уравнения непрерывности, выражающие закон сохранения электрического заряда. Чтобы получить уравнение непрерывности необходимо взять дивергенцию от обеих частей первого из уравнений Максвелла в дифференциальной форме записи:

Уравнения Максвелла выполняются во всех инерциальных системах отсчета. Они являются релятивистки инвариантными. Это есть следствие принципа относительности, согласно которому все инерциальные системы отсчета физически эквивалентны друг другу. Вид уравнений Максвелла при переходе от одной инерциальной системы отсчета к другой не меняется, однако входящие в них величины преобразуются по определенным правилам. Т.е. уравнения Максвелла являются правильными релятивистскими уравнениями в отличие, например, от уравнений механики Ньютона.

Уравнения Максвелла несимметричны относительно электрического и магнитного полей. Это обусловлено тем, что в природе электрические заряды существуют, а магнитные заряды нет.

Из уравнений Максвелла следует важный вывод о существовании принципиально нового явления: электромагнитное поле способно существовать самостоятельно – без электрических зарядов и токов. При этом изменение его имеет обязательно волновой характер. Поля такого рода называют электромагнитными волнами. В вакууме они всегда распространяются со скоростью равной скорости света. Теория Максвелла предсказала существование электромагнитных волн и позволила установить все их основные свойства.

МАКСВЕЛЛА УРАВНЕНИЯ

1. Краткая история

2. Каноническая форма

3. Максвелла уравнения в интегральной форме

4. Общая характеристика Максвелла уравнений

5. Максвелла уравнения для комплексных амплитуд

6. Алгебраические Максвелла уравнения

7. Материальные уравнения

8. Граничные условия

9. Двойственная симметрия Максвелла уравнений

10. Максвелла уравнения в четырёхмерном представлении

11. Лоренц-инвариантность Максвелла уравнений

12. Лагранжиан для электромагнитного поля

13. Единственность решений Максвелла уравнений

14. Классификация приближений Максвелла уравнений

Максвелла уравнения - ур-ния, к-рым подчиняется (в пределах применимости классической ыакроскопич. , см. Электродинамика классическая), электромагнитное поле в вакууме и сплошных средах.

1. Краткая история

Установлению M. у. предшествовал ряд открытий законов взаимодействий заряженных, намагниченных и токонесущих тел (в частности, законов Кулона, Био - Савара, Ампера). В 1831 M. Фарадей (M. Faraday) открыл закон эл--магн. индукции и примерно в то же время ввёл понятие электрич. и магн. полей как самостоят, физ. субстанций. Опираясь на фарадеевское представление о поле и введя ток смещения, равнозначный по своему магн. действию обычному электрич. току, Дж. К. Максвелл (J. С. Maxwell, 1864) сформулировал систему ур-ний, названную впоследствии ур-ниями Максвелла. M. у. функционально связывают электрич. и магн. поля с зарядами и токами и охватывают собой все известные закономерности макроэлектромагнетизма. Впервые о M. у. было доложено на заседании Лондонского Королевского общества 27 окт. 18(34. Первоначально Максвелл прибегал к вспомогат. механич. моделям "эфира", но уже в "Трактате об электричестве и магнетизме" (1873) эл--магн. поле рассматривалось как самостоят, физ. объект. Физ. основа M. у.- принцип близкодействия, утверждающий, что передача эл--магн. возмущений от точки к точке происходит с конечной скоростью (в вакууме со с). Он противопоставлялся ньютоновскому принципу дальнодействия, сводящемуся к мгновенной передаче воздействий на любое расстояние Матем. аппаратом теории Максвелла послужил векторный анализ, представленный в инвариантной форме через кватернионы Гамильтона. Сам Максвелл считал, что его заслуга состоит лишь в матем. оформлении идей Фарадея.

2. Каноническая форма

Канонич. форма записи, принятая ныне, принадлежит Г. Герцу (H. Hertz) и О. Хевисайду (О. Heaviside) и основана на использовании не кватернионных, а векторных полей: напряжённости электрического поля E , напряжённости магнитного поля H , векторов электрической индукции D и магнитной индукции В . M. у. связывают их между собой, с плотностью электрического заряда и плотностью электрического тока J , к-рые рассматриваются как источники:


3. Максвелла уравнения в интегральной форме

Наконец, M. у. в интегральной форме облегчают физ. интерпретацию MH. эл--магн. явлений и поэтому нагляднее сопоставляются с теми экспериментально установленными законами, к-рым они обязаны своим происхождением. Так, ур-ние (1a ) есть обобщение Био - Савара закона (с добавлением к току максвелловского смещения тока ).

Ур-ние (2a) выражает закон индукции Фарадея; иногда его правую часть переобозначают через "магн. ток смещения"

где- плотность "магн. тока смещения", Ф В - магн. поток. Ур-ние (За) связывают с именем Гаусса , установившим соленоидальность поля В , обусловленную отсутствием истинных магн. зарядов. Впрочем вопрос о существовании магнитных монополей пока остаётся открытым. Но соответствующее обобщение M. у. произведено (Хевисайд, 1885) на основе принципа двойственной симметрии M. у. (см. в разделе 9), для чего в (2) и (2a) наряду с магн. током смещения вводится ещё и "истинный" магн. ток (процедура, обратная проделанной когда-то Максвеллом с электрич. током в первом ур-нии), а в ур-ние Гаусса (3), (За) - магн. заряд


где - плотность магн. заряда. Фактически все экспериментальные установки для регистрации ожидаемых магнитных монополей основаны на этом предположении. Наконец, ур-ние (4a ) определяет поле свободного электрич. заряда; его иногда называют законом Кулона (Ch. A. Coulomb), хотя, строго говоря, оно не содержит утверждения о силе взаимодействия между зарядами, да и к тому же справедливо не только в электростатике, но и для систем с произвольным изменением поля во времени. На тех же основаниях иногда и ур-нпе (Ia) связывают с именем Ампера (A. Ampere).

4. Общая характеристика Максвелла уравнений

Совокупность M. у. (1) - (4) составляет систему из восьми (двух векторных и двух скалярных) линейных дифференц. ур-ний 1-го порядка для четырёх векторов Источники (скаляри вектор) не могут быть заданы произвольно; применяя операцию к ур-нию (1) и подставляя результат в (4), получаем:

или в интегральной форме:

Это ур-ние непрерывности для тока, содержащее в себе закон сохранения заряда для замкнутых изолнров. областей,- один из фундам. физ. принципов, подтверждаемых в любых экспериментах.

Ур-ния (1) - (4) распадаются на два самостоят, "блока": ур-ния (1) и (4), содержащие векторы и источники и ур-ния (2) и (3) - однородные ур-ния для не содержащие источников. Ур-ння (2) и (3) допускают получение общего решения, в к-ромвыражаются через т. H. потенциалы электромагнитного поля При этом ур-ние (3) "почти следует" из (2), т. к. операция (у), применённая к (2), даёт что отличается от (3) только константой, определяемой нач. условиями. Аналогично ур-ние (4) "почти следует" из (1) и ур-ния непрерывности (5).

Система M. у. (1) - (4) не является полной: по существу, она связывает 4 векторные величины двумя векторными ур-ниями. Её замыкание осуществляется путём добавления соотношений, связывающих векторы 1-го "блока"с векторами 2-го "блока" Эти соотношения зависят от свойств сред (материальных сред), в к-рых происходят эл--магн. процессы, и наз. материальными ур-ниями (см. раздел 7).

5. Максвелла уравнения для комплексных амплитуд

В силу линейности системы (1) - (4) для её решений справедлив суперпозиции принцип .Часто оказывается удобным фурье-представление общего решения (1) - (4) как ф-ции времени (см. Фурье преобразование) . Записывая временной фактор в виде , для комплексных фурье-амплитуди т. д.) получаем систему ур-ний


Система (1б) - (4б) в нек-ром смысле удобнее (1) - (4), ибо упрощает применение к эл--динамич. системам, обладающим временной дисперсией (см. раздел 7), т. е. зависимостью параметров от частоты

6. Алгебраические Максвелла уравнения

Если распространить (в силу линейности M. у.) фурье-разложение и на зависимость полей от пространственных координат, т. е. представить общее решение ур-ний (1) - (4) в виде суперпозиции плоских волн типа (k - ), то для фурье-компонентов нолейk и т. д.) получим систему алгебраич. ур-ний:



Такое сведение M. у. к набору ур-ний для осцилляторов (осцилляторов поля) составляет важный этап перехода к квантовой электродинамике, где эл--магн. поле рассматривается как совокупность фотонов, характеризуемых энергиями и импульсами Однако и в макроэлектродинамике представления (1в ) - (4в ) оказываются иногда вполне адекватными физ. сущности процессов: напр., при выделении откликов высокодобротных систем (см. Объёмный резонатор) или при изучении "механизма формирования" мод со сложной пространственной структурой из набора плоских волн и т. п. Наконец, M. у. в форме (1в ) - (4в ) удобны для описания свойств эл--динамич. систем, обладающих не только временной, но и пространственной дисперсией, если последняя задаётся в виде зависимости параметров от волнового вектора k.

7. Материальные уравнения

В макроэлектродинамике материальные связи, характеризующие эл--магн. свойства сред, вводятся феноменологически; они находятся либо непосредственно из эксперимента, либо на основании модельных представлений. Существуют два способа описания: в одном векторы E и H считаются исходными и материальные ур-ния задаются в виде D = D (E , H ) и В = В (Е,Н ), в другом - за исходные берутся векторы 2-го "блока" E и В , и соответствующие материальные связи представляются иначе: D = D (E,В ), H= H (E , В ). Оба описания совпадают для вакуума, где материальные уравнения вырождаются в равенства D = E и B = H .

Рассмотрим простейшую модель среды, характеризуемую мгновенным, локальным . откликом на появляющиеся в ней поля E и H . Под действием поля E в такой среде возникает электрич. поляризация (см. Поляризации вектор) , а под действием поля H - магн. поляризация . Чаще её наз. намагниченностью и обозначают М .

Материальные ур-ния для таких сред имеют вид

При этом индуцированные в среде электрич. заряды наз. связанными или поляризац. зарядами с плотностью , а токи, обусловленные их изменениями,- поляризац. токами с плотностью:


Эти понятия были перенесены и на магн. поля, что можно выразить в виде системы ур-ний, аналогичной


и только потом выяснилось, что истинными источниками среды оказались электрич. токи , а не магн. заряды. Поэтому терминология сложилась на основе физически некорректной системы


тогда как следовало бы принять беззарядовые ур-ния

что равносильно замыканию исходных M. у. (1) - (4) с помощью материальных связей

Из (6) и (7a) следует, что 2-й вариант представления материальных соотношений, в к-ром постулируются в качестве исходных векторы E и B , физически предпочтительнее.

В модели Лоренца - Максвелла усреднение микрополя Н микро, произведённое с учётом вклада со стороны индуциров. полей, приводит к ур-ниям (9) и соответственно <Н микро>= В . Однако обычно параметры сред вводятся с помощью ур-ний (7), что облегчает двойственную симметризацию ф-л (подробнее см. в разделе 9). Напр., скалярные восприимчивости сред (c e , c m) определяются соотношениями

Простейшие модели сред характеризуются пост, значениямиВ случае вакуума0.

Классификация разл. сред ооычно основывается на материальных ур-ниях типа (10) и их обобщениях. Если проницаемости e и m не зависят от полей, то M. у. (1) - (4) вместе с материальными ур-ниями (10) остаются линейными, поэтому о таких средах говорят как о линейных средах. При наличии зависимостейсреды наз. нелинейными: решения M. у. в нелинейных средах не удовлетворяют принципу суперпозиции. Если проницаемости зависят от координат то говорят о неоднородных средах, при зависимости от времени - о нестац попарных средах (иногда такие эл--динамич. системы наз. параметрическими). Для анизотропных сред скаляры e, m в (10) заменяются на тензоры : (по дважды встречающимся индексам производится суммирование). Важное значение имеют также эффекты запаздывания и нелокальности отклика среды на внеш. поля.

Значение индуциров. поляризации Р е , напр, в момент г, может определяться, вообще говоря, значениями полей во все предыдущие моменты времени, т. е.


что при преобразовании Фурье по времени приводит к зависимости [соответственноi]. Такие среды наз. средами с временной (частотной) дисперсией или просто диспергирующими средами . Аналогичная связь устанавливается и для нелокальных взаимодействий, когда отклик в точке г зависит от значения полей, строго говоря, во всех окружающих точкахно обычно всё-таки в пределах нек-рой конечной её окрестности: При преобразовании Фурье по г это приводит к появлению зависимостей такие среды наз. средами с пространственной дисперсией (см. Дисперсия пространственная ).

В проводящих средах входящая в M. у. (1) - (5) плотность тока состоит из двух слагаемых: одно по-прежнему является сторонним токомобусловленным заданным перемещением электрич. зарядов под действием сторонних сил (обычно неэлектрич. происхождения), а другое - током проводимостизависящим от полей, определяемых системой M. у., и связанным с ними материальными ур-ниями вида В простейшем случае эта зависимость сводится к локальному Ома закону ,

где - электропроводность (проводимость) среды. Иногда в (11) вводят обозначение, благодаря к-рому различают системы с заданными токами и системы с заданными полями (напряжениями). Для синусоидальных во времени полей, подчинённых ур-ниям (1б) - (4б) и материальным связям (10) и (11), вводится комплексная диэлектрич. проницаемость, объединяющая (10) и (11),, мнимая часть к-рой обусловлена проводимостью и определяет диссипацию энергии эл--магн. поля в среде. По аналогии вводится комплексная магн. проницаемость, мнимая часть к-рой обусловливает потери, связанные с перемагничиванием среды. Комплексные проницаемости в общем случае зависят от частоты w и волнового вектораэти зависимости не могут быть произвольными: причинности принцип связывает их действительные и мнимые части Крамерса - Кронига соотношениями .

В общем случае вид материальных ур-ний зависит также и от системы отсчёта, в к-рой эти ур-ния рассматривают. Так, если в неподвижной системе К среда характеризуется простейшими ур-ниями (10), то в инер-циальной системе К" , движущейся относительно К с пост, скоростью и, появляется анизотропия:



где индексыобозначают продольные и поперечные ксоставляющие векторов. В рамках алгебраич. M. у. (1в) - (4в) материальные ур-ния (12) могут быть переписаны в виде

что можно трактовать как наличие временной и пространственной дисперсии. Исследование процессов с материальными связями типа (12) составляет предмет электродинамики движущихся сред . Заметим, что хотя характеристики е и m удобно симметризуют материальные ур-ния, их введение не является непременным условием замыкания M. у. Соответствующей перенормировкой допустимо свести описание магн. поля к одно-векторному, т. е. сделать но при этом даже для изотропной среды диэлектрич. проницаемость становится тензором, она различна для вихревых и потенциальных полей. Физически это связано с неоднозначностью модельного представления диполь-ных моментов, во всяком случае приони могут равноправно интерпретироваться и как зарядовые, и как токовые.

8. Граничные условия

Поскольку M. у. справедливы для любых (в рамках применимости макроэлектродинамики) неоднородных сред, то в областях резкого изменения их параметров иногда можно игнорировать тонкую структуру распределения полей в переходном слое и ограничиться "сшиванием" полей по разные стороны от него, заменяя тем самым переходный слой матем. поверхностью - границей, лишённой толщины. Если внутри переходной области имелись заряды с объёмной плотностьюили токи с объёмной плотностьюто при сжатии слоя в поверхность сохраняются их интегральные значения ·- вводятся поверхностные заряды r пов и поверхностные токи

Толщина переходного слоя.

Применение M. у. и ур-ния непрерывности приводит к следующим граничным условиям:


Здесь индексы 1 и 2 характеризуют поля по разные стороны от границы, а- единичный вектор нормали к поверхности, направленный из среды 1 в среду 2. Правила (1г ) - (5г ) пригодны для перехода через любые поверхности, независимо от того, совпадают ли они с границами раздела сред или проходят по однородным областям, поэтому их иногда наз. поверхностными M. у.

Иногда граничные условия (1г ) - (5г ) порождают краевые условия, т. е. задают не правила перехода через границу, а сами поля на ней. Напр., внутри идеального проводника в силу (11) (иначе возник бы ток неограниченной плотности), поэтому на границе раздела диэлектрик - идеальный проводник в согласии с (2г )Такие границы наз. идеальными электрич. стенками. Аналогично вводится понятие идеальной магн. стенки, на к-рой Если структура полей по одну сторону от границы универсальна, т. е. не зависит от распределения полей по др. сторону, то краевые условия могут состоять в задании не самих полей, а лишь связей между ними, напр. где Z - нек-рая скалярная или тензорная ф-ция координат границы (- тангенциальный компонент). К условиям такого рода относится, в частности, Леонтовича граничное условие для синусоидально меняющихся во времени полей на поверхности хороших проводников.

9. Двойственная симметрия Максвелла уравнений

Двойственная симметрия M. у. имеет место для любой формы их записи. Она состоит в инвариантности M. у. относительно линейных преобразований нолей, производимых по след, правилам:

Здесь- произвольный угл. параметр; в частности, при= О получаются тождественные преобразования, а при - стандартные преобразования перестановочной двойственности (операция ): замена даёт в областях, свободных от источников, новое решение M. у. При этом, однако, оно меняет местами ур-ния

И, следовательно, там, где раньше были распределены электрич. источники, возникают источники магнитные

Поэтому с точки зрения двойственной симметрии M. у. задание материальных связей в виде представляется вполне удобным. Дуально-симметричные M. у. обладают рядом достоинств, по крайней мере в чисто методич. плане. Так, напр., они симметризуют скачки тангенциальных компонентов магн. и электрич. полей и, если задание ff Tall на поверхности идеальной электрич. стенки эквивалентно заданию поверхностного электрич. тока, то задание Я 1а „ на идеальной магн. стенке сводится к заданию магн. поверхностного тока:

Таким сведением задач с заданнымиполями к задачам с заданными токами широко пользуются в теории , в частности в дифракции радиоволн.

Принцип перестановочной двойственности является представителем класса дискретных преобразований (см. Симметрия ),оставляющих инвариантными M. у. Такого же сорта преобразованиями являются, в частности, операция обращения времени


последовательно осуществляемые комбинации операций

10. Максвелла уравнения в четырёхмерном представлении

Придавая времени t смысл четвёртой координаты и представляя её чисто мнимой величиной (см. Минковского пространство-время ),можно заключить описание электромагнетизма в компактную форму. Эл--магн. поле в 4-описании может быть задано двумя антисимметричными тензорами


где- Леви-Чивиты символ ,лат. индексы пробегают значения 1, 2, 3, 4, а греческие - 1, 2, 3. В 4-век-торе тока объединены обычная плотность тока j e и плотность электрич. заряда


аналогично вводят 4-вектор магн. тока.

В этих обозначениях M. у. допускают компактное 4-мерное представление:


Взаимной заменой векторов поля и индукции в ф-лах (13),(14) вводятся тензоры индукции эл--магн. поля



через к-рые также могут быть записаны M. у.:


Любая пара тензорных ур-ний, содержащая в правых частях оба 4-тока (электрич. и мат.), тождественна системе M. у. Чаще используют пару ур-ний (15 а), (18), при этом материальные ур-ния сводятся к функциональной связи между тензорами (последний чаще обозначают через.

Из антисимметрии тензоров поля, индукции и M. у. в форме (17) - (18) следует равенство нулю 4-дивергенций 4-токов:


к-рое представляет собой 4-мерную запись ур-ний непрерывности для электрич. (магн.) зарядов. T. о., 4-векторы токов являются чисто вихревыми, и соотношения (17), (18) можно рассматривать как их представление в виде 4-роторов соответствующих тензоров. Наряду с представленным здесь вариантом часто используется также 4-мерное описание, в к-ром временная координата (обычно с индексом О) берётся действительной, но 4-мерному пространству приписывается гипербодич. сигнатура в таком пространстве приходится различать ко- и контравариантные компоненты векторов и тензоров (см. Ковариантность и контравариантность) .

11. Лоренц-инвариантность Максвелла уравнений

Все экспериментально регистрируемые эл--динамич. явления удовлетворяют относительности принципу .Вид M. у. сохраняется при линейных преобразованиях, оставляющих неизменным интервал и составляющих 10-мерную Пуанкаре группу : 4 трансляции , 3 пространственных (орто-) поворота и 3 пространственно-временных (орто-хроно-) поворота, иногда называемых ло-ренцевыми вращениями. Последние соответствуют перемещениям системы отсчёта вдоль осей x a с пост, скоростямиВ частности, для получается простейшая разновидность Лоренца преобразований:

Где Соответственно поля преобразуются по правилам:


Релятивистски-ковариантная запись M. у. позволяет легко находить инвариантные комбинации полей, токов и потенциалов (4-скаляров или инвариантов Лоренца группы) , сохраняющихся, в частности, при переходе от одной инерциальной системы отсчёта к другой. Во-первых, это чисто полевые инварианты (см. Инварианты электромагнитного поля ).Во-вторых, это токовые (источниковые) инварианты:


В-третьих, это потенциальные инварианты:



где- магн. потенциалы (получающиеся из А е и преобразованием перестановочной двойственности), источниками к-рых являются магн. токи j m и заряды. И, наконец, многочисл. коыбиниров. инварианты типаи им подобные. Число таких комбиниров. инвариантов (квадратичных, кубичных и т. д.) по полям н источникам неограниченно.

12. Лагранжиан для электромагнитного поля

M. у. могут быть получены из наименьшего действия принципа , т. е. их можно совместить с Эйлера - Лаг-ранжа уравнениями , обеспечивающими вариационную акстремальность ф-ции действия :


здесь - лагранжиан ,являющийся релятивистски-инвариантной величиной; интегрирование ведётся по 4-мерному объёму V, (t 2 - t 1 ) с фиксиров. границами. В качестве обобщённых координат принято обычно использовать потенциалы А a и f. Поскольку лагран-жев формализм должен давать полное (замкнутое) динамич. описание системы, то при его построении нужно принимать во внимание материальные ур-ния. Они фигурируют как зависимости связанных зарядов и токов от полей В и Е ·


В результате лагранжиан принимает вид инвариантной комбинации полей, потенциалов и источников:



А ур-ния Эйлера - Лагранжа для нек-рой обобщённой координаты получают приравниванием нулю соответствующих вариационных производных:

Для приходим к (4), для- к ур-нию (1) в соответствующих обозначениях. Вариационный подход позволяет придать теории универсальную форму описания, распространяемую и на описания динамики любых взаимодействий, даёт возможность получать ур-ния для комбиниров. динамич. систем, напр, электромеханических. В частности, для систем с сосредоточенными параметрами, характеризуемых конечным числом степеней свободы, соответствующие ур-ния наз. ур-ниями Лагранжа - Максвелла.

13. Единственность решений Максвелла уравнений

Различают теоремы единственности для стационарных и нестационарных процессов. Условия единственности нестационарных решений извлекаются из Пойн-тинга теоремы , где источники считаются заданными ф-циями координат и времени. Если бы они порождали два разл. поля, то разность этих полей в вакууме (или в любой линейной материальной среде) вследствие принципа суперпозиции была бы решением однородных M. у. Для обращения этой разности в нуль и, следовательно, получения единств, решения достаточно удовлетворить след, трём условиям. 1) На поверхности S , окружающей область V , где ищется поле, должны быть заданы тангенциальные составляющие поля Е тан или поля Н тан либо соотношения между ними импедансного типа: (п - нормаль к S ) со значениями Z, исключающими приток энергии извне. К таковым относятся, в частности, условия излучения (см. Зоммерфельда условия излучения ),к-рым удовлетворяют волны в однородной среде на больших расстояниях от источников. Во всех случаях поток энергии для разностного поля вообще исчезает или направлен наружу (из объёма). 2) В нач. момент времени должны быть заданы все поля всюду внутри V . 3) Плотность энергии электромагнитного поля HB ) должна быть положительна (вакуум, среды с . Эта частная теорема единственности обобщается на среды с нелокальными связями, а также на нек-рые виды параметрич. сред. Однако в нелинейных средах, где принцип суперпозиции не работает, никаких общих утверждений о единственности не существует.

В стационарных режимах нач. условия выпадают, и теоремы единственности формулируются непосредственно для установившихся решений. Так, в электростатике достаточно задать все источники r e ст, все полные заряды на изолиров. проводниках или их потенциалы, чтобы при соответствующих условиях на бесконечности (нужное спадание поля) решение было бы единственным. Аналогичные теоремы устанавливаются для магнитостатики и электродинамики пост, токов в проводящих средах.

Особо выделяется случай синусоидальных во времени процессов, для к-рых формулируют след, признаки, достаточные для получения единств, решения: 1) задание источников задание E тан или Н тан на ограничивающей объём V поверхности S или соответствующих импедансных условий, обеспечивающих отсутствие потока вектора Пойнтинга внутрь V; 3) наличие малого поглощения внутри V или малой утечки энергии через S для исключения существования собств. колебаний на частоте

14. Классификация приближений Максвелла уравнений

Классификация приближений M. у. обычно основывается на безразмерных параметрах, определяющих и критерии подобия для эл--магн. полей. В вакууме таким параметром является отношение , где - характерный масштаб изменения полей (либо размер области, в к-рой ищется решение), - характерный временной масштаб изменения полей.

а) а = 0 - статич. приближение, статика.

Система M. у. распадается на три.


Материальная связь в простейшем случае имеет вид . Это система M. у. для электростатики, в к-рой источниками служат заданные распределения плотности электрич. заряда и сторонней поляризации . В однородной среде эл--статич. потенциал f определяется Пуассона уравнением


Для более сложных материальных <ур-ний различают электростатику анизотропных сред , нелинейную электростатику , электростатику сред с пространственной дисперсией , важным частным случаем к-рых являются движущиеся среды с временной дисперсией (здесь может даже меняться тип ур-ния для потенциала с эллиптического на параболический) и т. п.

II. Поля в магнитостатике описываются ур-ниями


где в случае простейшей материальной связи индуци-ров. определяется соотношением


Источниками в ур-ниях магнитостатики являются заданные распределения плотности электрич. тока и сторонней намагниченности В однородной среде

векторный потенциал магн. поля(калибровка кулоновская) определяется векторным ур-нием Пуассона

В общем случае возможны такие же разновидности сред, что и в электростатике.

III. K статич. электродинамике относят и процессы протекания пост, токов в распределённых проводящих средах. Токовая статика охватывается ур-ниями


Источниками являются силы неэлектрич. происхождения, действующие на заряды, характеризующиеся напряжённостью Электрич. заряды присутствуют лишь в местах неоднородности среды, напр, на границах проводящих сред. Распределение токов в проводящих средах сопоставимо с распределением электрич. и магн. полей в электростатике и магнитостатике. Часто благодаря этой аналогии говорят, напр., о магн. цепях, по к-рым "текут" магн. потоки аналогичные электрич. токам в электрич. цепях.

б) - квазистатика, обобщающая соответствующие статич. приближения.

В квазиэлектростатике вакуумные электрич. поля описываются ур-ниями статики (I.), а в ур-ниях для магн. поля в качество заданного источника фигурирует и ток смещения. Квазимагнитостатика описывается статич. ур-ниями для магн. полей с учётом закона индукции (2) для электрич. поля. Поскольку вихревое электрич. поле меняет электрич. токи в проводниках, являющиеся источниками магн. поля, то этот раздел квазистатики более богат, чем предыдущий; он описывает широкий круг явлений, происходящих в цепях перем, тока с сосредоточенными параметрами: ёмкостями, индуктивностями и сопротивлениями.

Квазистатика в распределённых проводящих средах описывается ур-ниями квазистационарного (квазистатического) приближения , в к-рых током смещения пренебрегают по сравнению с токами проводимости. В этом приближении распределения электрич. токов, электрич. и магн. полей описываются одинаковыми ур-ниями диффузионного типа:


Эти ур-ния определяют, напр., распределение токов Фуко, проникновение перем. эл--магп. поля в проводник (скин-эффект )и т. п.

в) Резонансные волновые поля описываются точной системой M. у., однако их иногда выделяют из общего класса полей, особенно в тех случаях, когда их структура (пространственное распределение) фиксируется границами области, внутри к-рой эти поля могут быть возбуждены (напр., внутри полых резонаторов с металлическими стенками или в поперечном сечении волноводов либо в окрестности тонкой проволочной или щелевой антенны) . При этом обычно обращаются к фурье-преобразованию M. у. и представлению поля в виде набора дискретных или квазидискретных мод.

г). В рамках этого неравенства существуют ква-зиоптич. и оптич. приближения (см. Квазиоптика, Геометрической оптики метод) , относящиеся к протяжённым в масштабе длины волны распространениям полей (волновым пучкам, многомодовым конфигурациям и т. п.). Под характерным масштабом, входящим в параметр а, здесь подразумевается масштаб изменения амплитуды поля.

15. Максвелла уравнения в различных системах единиц

Выше использовалась симметричная гауссова абс. система единиц. Удобство гауссовой системы единиц состоит в том, то все 4 вектора поля обладают в ней одинаковыми размерностями и потому в классическом "линейном" вакууме можно избежать введения ненужных констант: в силу безразмерные проницаемости вакуума обращаются в единицыДр. достоинством одинаковой размерности эл--магн. полей является их ес-теств. объединение в единые тензоры поля вида (13), (14) без внесения корректирующих множителей.

Если принять запись ур-ния непрерывности в форме (5), а также соблюдение принципа дуальной симметрии, то M. у. можно придать вид


где константы связаны соотношением

Для простейших материальных связей типа (10) можно ввести проницаемости вакуумаи относит, проницаемости среды Тогда из волнового ур-ния в вакууме следует естеств. соотношение между константами


где с - скорость распространения любого эл--магн. возмущения (в частности, света) в вакууме. В гауссовой системе

Существует операция рационализации, предложенная Хевисайдом и состоящая в устранении иррациональных числовых множителей из M. у. Простейший путь принят в рационализов. системе Xe-висайда - Лоренца.

МАКСВЕЛЛА УРАВНЕНИЯ

МАКСВЕЛЛА УРАВНЕНИЯ

Фундаментальные ур-ния классич. макроскопич. электродинамики, описывающие эл.-магн. явления в любой среде (и в вакууме). Сформулированы в 60-х гг. 19 в. Дж. Максвеллом на основе обобщения эмпирич. законов электрич. и магн. явлений и развития идеи англ. учёного М. Фарадея о том, что вз-ствия между электрически заряж. телами осуществляются посредством эл.-магн. поля. Совр. форма М. у. дана нем. физиком Г. Герцем и англ. физиком О. Хевисайдом.

М. у. связывают величины, характеризующие эл.-магн. , с его источниками, т. е. с распределением в пр-ве электрич. зарядов и токов. В вакууме эл.-магн. поле характеризуется напряжённостью электрич. поля Е и магн. индукцией В - векторными величинами, зависящими от пространств. координат и времени. Эти величины определяют силы, действующие со стороны поля на заряды и токи, к-рых в пр-ве задаётся плотностью заряда r (величиной заряда в ед. объёма) и плотностью электрического тока j. Для описания эл.-магн. процессов в матер. среде, кроме Е и В, вводятся вспомогат. векторные величины, зависящие от и св-в среды: электрич. индукция D и напряжённость магн. поля Н.

М. у. позволяют определить осн. хар-ки поля (E, В, D и Н) в каждой точке пр-ва в любой момент времени, если известны источники поля j и r как ф-ции координат и времени. М. у. могут быть записаны в интегр. или дифф. форме (ниже они приводятся в Гаусса системе единиц).

М. у. в и н т е г р а л ь н о й ф о р м е определяют не векторы E, В, D и Н в отд. точках пр-ва, а нек-рые интегр. величины, зависящие от распределения этих хар-к поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и B через произвольные замкнутые поверхности.

Первое М. у. явл. обобщением на перем. поля эмпирического Био - Савара закона о возбуждении магн. поля электрич. токами. Максвелл высказал гипотезу, что магн. поле порождается не только токами, текущими в проводнике, но и перем. электрич. полями в диэлектриках или вакууме. Величина, пропорц. скорости изменения электрич. поля во времени, была названа Максвеллом током смещения, он возбуждает магн. поле по тому же закону, что и . Полный , равный сумме тока смещения и тока проводимости, всегда явл. замкнутым. Первое М. у. имеет вид:

т. е. циркуляция вектора магн. напряжённости вдоль замкнутого контура L (сумма скалярных произведений вектора Н в данной точке контура на бесконечно малый отрезок dl контура) определяется полным током через произвольную S, ограниченную данным контуром. Здесь jn - проекции плотности тока проводимости j на нормаль к бесконечно малой площадке ds, являющейся частью поверхности S; (1/4p)(дDn/дt) - проекция плотности тока смещения на ту же нормаль; с-3 1010см/с - постоянная, равная скорости распространения эл.-магн. вз-ствий (скорость света) в вакууме.

Второе М. у. является матем. формулировкой закона электромагнитной индукции Фарадея и записывается в виде:

т. е. циркуляция вектора напряженности электрич. поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магн. индукции через поверхность S, ограниченную данным контуром. Здесь Bn - проекция на нормаль к площадке ds вектора магн. индукции В; знак «-» соответствует Ленца правилу для направления индукц. тока.

Третье М. у. выражает опытные данные об отсутствии магн. зарядов, аналогичных электрическим (магн. поле порождается только электрич. токами):

т. е. поток вектора магн. индукции через произвольную замкнутую поверхность S равен нулю.

Четвёртое М. у. (обычно наз. Гаусса теоремой) представляет собой обобщение закона вз-ствия неподвижных электрич. зарядов - Кулона закона:

т. е. поток вектора электрич. индукции через произвольную замкнутую поверхность S определяется электрич. зарядом, находящимся внутри этой поверхности (в объёме V, ограниченном поверхностью S).

Если считать, что векторы эл.-магн. поля (Е, В, D и Н) явл. непрерывными ф-циями координат, то, рассматривая циркуляцию Н и Е по бесконечно малым контурам и потоки векторов В и D через поверхности, ограничивающие бесконечно малые объёмы, можно от интегральных М. у- (1, а-г) перейти к системе дифференциальных М. у., характеризующих поле в каждой точке пр-ва:

Физ. смысл ур-ний (2) тот же, что ур-ний (1).

М. у. в форме (1) или (2) не образуют полной замкнутой системы, позволяющей рассчитывать эл.-магн. при наличии матер. среды. Их необходимо дополнить соотношениями, связывающими векторы Е, Н, D, В и j, к-рые не являются независимыми. Связь между ними определяется св-вами среды и её состоянием, причём D и 3 выражаются через Е, а В - через Н:

D=D(E), B=B(H),j=j(E). (3)

Эти ур-ния наз. ур-ниями состояния или материальными ур-ниями; они описывают эл.-магн. св-ва среды и для каждой конкретной среды имеют определ. форму. В вакууме D?Е и В?Н.

Совокупность ур-ний поля (2) и ур-ний состояния (3) образуют полную систему ур-ний.

Макроскопич. М. у. описывают среду феноменологически, не рассматривая сложного механизма вз-ствия эл.-магн. поля с заряж. ч-цами среды. М. у. могут быть получены из Лоренца - Максвелла уравнений для микроскопич. полей и определ. представлений о строении в-ва путём усреднения микрополей по малым пространственно-временным интервалам. Таким способом получаются как осн. ур-ния поля (2), так и конкретная форма ур-ний состояния (3), причём вид ур-ний поля не зависит от св-в среды.

Ур-ния состояния в общем случае очень сложны, т. к. векторы D, В и j в данной точке пр-ва в данный момент времени могут зависеть от полей E и H и If во всех точках среды во все предшествующие времени. В нек-рых средах векторы D и В могут быть отличными от нуля при Е и Н равных нулю (сегнетоэлектрики и ферромагнетики). Однако для большинства изотропных сред, вплоть до весьма значит. полей, ур-ния состояния имеют простую линейную форму:

D=eE, B=mH, j=sE+jстр. (4)

Эл.-магн. явления протекают одинаково во всех инерциальных системах отсчёта, т. е. удовлетворяют относительности принципу. В соответствии с этим М. у. не меняют своей формы при переходе от одной инерц. системы отсчёта к другой (релятивистски инвариантны). Выполнение принципа относительности для эл.-магн. процессов оказалось несовместимым с классич. представлениями о пр-ве и времени, потребовало пересмотра этих представлений и привело к созданию спец. относительности теории (А. Эйнштейн, 1905). Форма М. у. остаётся неизменной при переходе к новой инерц. системе отсчёта, если пространств. координаты и время, векторы поля E, Н, В и D, плотность тока j и плотность заряда r изменяются в соответствии с Лоренца преобразованиями. Релятивистски инвариантная форма М. у. подчёркивает тот факт, что электрич. и магн. поля образуют единое целое.

М. у. описывают огромную область явлений. Они лежат в основе электротехники и радиотехники и играют важную роль в развитии таких актуальных направлений совр. физики, как плазмы и проблема управляемого термоядерного синтеза, нелинейная оптика, конструирование ускорителей заряженных частиц, и т. д. М. у. неприменимы лишь при больших частотах эл.-магн. волн, когда становятся существенными квант. эффекты, т. е. когда энергия отд. квантов эл.-магн. ноля - фотонов - велика и в процессах участвует сравнительно небольшое число фотонов.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

МАКСВЕЛЛА УРАВНЕНИЯ

1. Краткая история

2. Каноническая форма

3. Максвелла уравнения в интегральной форме

4. Общая характеристика Максвелла уравнений

5. Максвелла уравнения для комплексных амплитуд

6. Алгебраические Максвелла уравнения

7. Материальные уравнения

8. Граничные условия