Костная ткань входит в состав стенок крупных. Структура костной ткани и кровообращение

Электропроводка

Плотность кости человека обеспечивается минеральными веществами. Сама же костная ткань состоит из клеток остеобластов и остеоцитов, остеокластов, задача их состоит в удалении старых, омертвевших клеток крови. Есть органический компонент, представляющий собой коллаген под названием оссеин. Костная ткань ребенка сразу после его рождения представлена 270 костями, со временем их становится 206, это если не учитывать сесамовидные. Наибольшая у человека бедренная кость, самая маленькая - стремя, расположенное в полости среднего уха.

Клеточная составляющая

Как все ткани, кость состоит из нескольких клеточных разновидностей. Это:

  • остеобласты
  • остеоциты
  • остеокласты
  • остеогенные клетки

Каждая имеет свое уникальное строение, расположена в различных участках.

Остеобласт

Эта клетка обеспечивает способность кости восстанавливаться, формирует новую кость. Величина ее от 15 до 20 мкм, задача ее в том, чтобы образовывать новое межклеточное вещество. Форма кубическая со многими углами, которые образованы мезенхимальными клетками - предшественниками, содержащими комплексы Гольджи. Всего клеточный состав остеобласта представлен рибосомами, зернистой эндоплазматической сетью.

Находятся остеобласты у человека в зоне роста, в большом количестве содержит их периост, эндост. Клетка выделяет межклеточное вещество, оказываясь в центре, оно отвердевает, образуя «ловушку». После этого с остеобластом происходят изменения, он меняет свою структуру, превращаясь в остеоцит. Последний - полноценная клетка кости, наиболее распространен.

Остеоцит


Остеоциты. Источник: drpozvonkov.ru

Как уже ранее упоминалось, остеоцит - зрелая форма остеобласта, имеет звездчатую форму. Диаметр его составляет примерно 15 мкм, а высотой он не более 7 мкм. Зрелая форма содержит в своем составе одно ядро, которое располагается ближе к стенке сосуда, рядом находятся два ядрышка, а окружено все мембраной. Расстояние между остеоцитами может колебаться от 20 до 30 мкм.

Во взрослом организме костная ткань представляет собой 42 миллиарда клеток. В среднем за 25 лет половина из них меняется, деления клеток не происходит. Расположен остеоцит в углублении, которое носит название лакуны, она со всех сторон окружена тканью кости.

Этот тип клеток отвечает за поддержание на постоянном уровне минеральной матрицы. Взаимодействие с другими клетками происходит через длинные каналы, расположенные в цитоплазме, все они находятся в пределах костной матрицы. Через каналы клетка получает питательные вещества.

Остеогенные клетки

В отличие от остальных эта клетка не потеряла способности к делению, может воспроизводить себе подобные. Она четко не дифференцирована, обладает высокой способностью к митозу, процессу, когда клетки делятся, происходит восстановление организма. Расположен этот вид в глубоком слое надкостницы, мозга кости. Процесс развития приводит к тому, что остеоген трансформируются в остеобласты.

Остеокласт

Эта клетка способствует тому, что развивается новая костная структура. Остеокласт имеет большие размеры, содержит несколько ядер в своем составе, отвечает за удаление старой кости. В среднем есть 5 ядер, а размер колеблется от 150 до 200 мкм. Организму подобные клетки сильно необходимы, поскольку благодаря им обеспечивается восстановление костей. Старая, поврежденная костная ткань растворяется за счет ферментов, выделяемых клеткой.

Этот тип клеток появляется не из кости, его родоначальником являются макрофаги, моноциты, составляющие белой крови. Процесс восстановления выглядит специфически, остеокластами постоянно уничтожается старая, поврежденная костная ткань, а остеобластами формируется новая. Когда процесс нарушается, кость при этом поротична, что приводит к переломам, повреждениям при незначительных нагрузках на нее.

В кости остеокласты расположены в специфических углублениях, которые носят название Бухт резорбции, лакун Хаушипа. Имеет остеокласт цитоплазму, внутри которой находится пенистая структура за счет вакуолей, пузырьков, содержащихся в большом количестве. В составе вакуолей есть лизосомы, которые выделяют фермент, кислую фосфатазу, именно за счет нее у человека разрушается старая костная ткань.

Составляющие кости

С гистологической точки зрения кость имеет несколько составляющих. Любая разновидность представлена:

  • надкостницей
  • компактным веществом
  • эндостом

Надкостница имеет строение, очень напоминающее надхрящницу. В составе внутреннего слоя, остеогенного, имеется рыхлая соединительная ткань с большим количеством остеокластов, остеобластов, сосудов.

Эндост, оболочка, которой выслан канал изнутри. В составе этого слоя основной является рыхлая волокнистая соединительная ткань. Есть остеобасты, остеокласты. В задачи этой кости входит ее питание, рост в толщину, восстановление.

Компактное вещество имеет три слоя: наружный и внутренний представляет пластинчатая костная ткань, между ними расположен остеонный слой. Остеон - структурно-функциональная единица. Внешне это плоскостное образование, которое представлено костными пластинками, концентрически направленными, наслоенными одна на другую, напоминая цилиндры, которые вставлены один в один.

Между пластинками есть углубления, лакуны, в них расположены остеоциты. В центре - полость, содержащая сосуд, канал получил название канала остеона или Гаверсового. Между остеонами есть пластинки кости, которые называются вставочными остеонами, которые разрушаются.

Формирование кости

У плода источником костей являются клетки мезинхимы, они выселяются из склеротомов. Кость может формироваться прямо из ткани мезенхимы, подобное получило название прямого остеогенеза. Если мезенхима образуется вместо хряща зоны роста, процесс называется непрямым остеогенезом, его имеют дети.

Непрямой вариант


Непрямой вариант формирования кости. Источник: drpozvonkov.ru

В процессе преобразования мезенхимы появляется грубоволокнистая костная ткань, она же получила название ретикулофиброзной. По мере своего роста, развития на ее месте появляется пластинчатая костная ткань. Прямой остеогенез включает четыре стадии.

Во время первой обособляется остеогенный островок, суть этого процесса в том, что мезенхимальные клетки усиленно делятся. Постепенно появляются остеогенные клетки, остеобласты, происходит появление кровеносных сосудов.

Суть второй, или остеоидной, стадии состоит в том, что остеобластами образовывается вещество между клетками. Некоторая часть остеобластов оказывается внутри, происходит преобразование в остеоцит. Частично остеобласты оказываются на поверхности, образовывая слой снаружи. Эти клетки потом будут формировать надкостницу.

Третьим этапом является минерализация вещества, оно активно насыщается кальцием, его солями, кость становится более компактная. Процесс минерализации происходит за счет поступления из крови глицерофосфата кальция. Щелочная фосфатаза, воздействуя на него, вызывает химическую реакцию для появления новых соединений, в частности, глицерина, остатка фосфорной кислоты. Последнее соединение вступает в реакцию с хлоридом кальция, появляется фосфат кальция. Он становится гидроаппатитом, напоминает прочный пластик.

Четвертая стадия является завершающей, имеет название перестройки, роста, после нее кость может представляться в своем окончательном виде. Надкостницей формируются общие пластины кости, в основной своей массе состоящие из остегенных клеток, располагающихся в адвентициальной оболочке сосуда, а также остеоны.

Прямой вариант


Прямой вариант формирования кости. Источник: drpozvonkov.ru

К этой ситуации относится вариант формирования в зоне роста, где был хрящ. В процессе развития сразу может образовываться пластинчатая кость, происходит процесс, как и в предыдущем случае, в четыре этапа.

Вначале этот тип развития предусматривает образование модели из хряща, которая будет развиваться. На втором этапе в области тела модели осуществляется перихондральное окостенение, суть которого состоит в том, что надхрящница становится надкостницей, это пластичный материал. В этом слое стволовые клетки, которые носят название остеогенных, превращаются в остеобласты. Нарастающий процесс дифференцировки является подготовкой к формированию общей пластинки, она формирует манжетку кости.

Параллельно с процессами, описанными ранее, осуществляется окостенение хряща в концах кости, процесс этот называется энхондральным окостенением. Такой же тип трансформации наблюдается в суставных поверхностях, все люди в процессе взросления проходят через это. В ткань хряща врастают сосуды, что важно для питания, дальнейшего преобразования. В адвентициальной оболочке сосудов расположены остеогенные клетки, которые впоследствии становятся остеобластами.

Уже упоминалось, что остеобласт может формировать межклеточное вещество рядом с собой. Таким образом, вокруг формируется остеон в виде пластинок кости. Параллельно хондрокластами разрушается хрящевая составляющая кости, после чего она приобретает свой специфический вид.

В конечном итоге кость перестраивается, растет, происходит разрушение старых участков, формирование новых. Надкостницей формируется тонковолокнистая костная ткань, которая со временем становится прочнее.

Разновидности костей

Есть два вида ткани, которые имеют принципиальные различия, могут встречаться в любом участке организма.

Кортикальная

Этой тканью образовано 80% всех костей в скелете человека, она отличается прочностью, расположена, в частности, в области десен. Задача кортикальной кости заключается в том, чтобы поддерживать тело в пространстве, в защите органов, обеспечении физического усилия, эта ткань способна накапливать, высвобождать кальций. Представлено содержание кортикальной кости плотно упакованными остеонами.

Губчатая

Отличия и менее плотную структуру имеет губчатая костная ткань, располагается она в небольших костях и области десен. Эта разновидность мягче, слабее, чем кортикальная. Данный тип встречается в концах длинных трубчатых костей, внутри тел позвонков. Это губчатый вид кости, состоящий из пластин, полосок, которые прилегают к полостям, расположенным нерегулярно, в них содержится красный костный мозг.

Если посмотреть на кость, то возникает ощущение, что пластинки расположены хаотично, никак не организовывая себя. Однако это не так, расположение построено таким образом, чтобы обеспечить прочность по типу строительных скобок, применяемых в строительстве. Линии нагрузки в кости могут менять свое направление в зависимости от изменения приложения силы. Площадь поверхности большая, за счет этого оптимально протекают метаболические процессы, обмен ионами кальция. Обратной стороной является то, что эта разновидность быстрее поражается остеопорозом.

На протяжении всей жизни кость может обновляться: отжившие клетки разрушаются, появляются новые. Процесс развития, представленный выше, находится в равновесии, разрушенные участки организм может восстановить. Регулируется процесс гормонами щитовидной и околощитовидных желез. Полезны, независимо от того какой тип кости, витамины, А, Д, С. У ребенка после рождения недостаток витамина Д приводит к формированию такого заболевания, как рахит.

Костная ткань - разновидность соединительной ткани, из которой построены кости - органы, составляющие костный скелет тела человека. Костная ткань состоит из взаимодействующих структур: клеток кости, межклеточного органического матрикса кости (органического скелета кости) и основного минерализованного межклеточного вещества. Клетки занимают всего лишь ≈1-5% общего объёма костной ткани скелета взрослого человека. Различают четыре типа клеток костной ткани.

Остеобласты - ростковые клетки, выполняющие функцию создания кости. Они расположены в зонах костеобразования на внешних и внутренних поверхностях кости.

Остеокласты - клетки, выполняющие функцию рассасывания, разрушения кости. Совместная функция остеобластов и остеокластов лежит в основе непрерывного управляемого процесса разрушения и воссоздания кости. Этот процесс перестройки костной ткани лежит в основе адаптации организма к многообразным физическим нагрузкам за счет выбора наилучших сочетаний жесткости, упругости и эластичности костей и скелета.

Остеоциты - клетки, происходящие из остеобластов. Они полностью замурованы в межклеточном веществе и контактируют отростками друг с другом. Остеоциты обеспечивают метаболизм (белков, углеводов, жиров, воды, минеральных веществ) костной ткани. Недифференцированные мезенхимальные клетки кости (остеогенные клетки, контурные клетки). Они находятся главным образом на наружной поверхности кости (у надкостницы) и на поверхностях внутренних пространств кости. Из них образуются новые остеобласты и остеокласты.

Межклеточное вещество представлено органическим межклеточным матриксом, построенным из коллагеновых (оссеиновых) волокон (≈90-95%) и основным минерализованным веществом (≈5-10%).

Коллаген внеклеточного матрикса костной ткани отличается от коллагена других тканей большим содержанием специфических поли полипептидов. Коллагеновые волокна в основном расположены параллельно направлению уровня наиболее вероятных механических нагрузок на кость и обеспечивают упругость и эластичность кости.

Основное вещество (the ground substance) состоит главным образом из экстрацеллюлярной жидкости, гликопротеидов и протеогликанов (хондроитинсульфаты, гиалуроновая кислота). Функция этих веществ пока не вполне ясна, но несомненно то, что они участвуют в управлении минерализацией основного вещества - перемещением минеральных компонентов кости.

Минеральные вещества , размещенные в составе основного вещества в органическом матриксе кости представлены кристаллами, построенными главным образом из кальция и фосфора (гидроксиапатит Ca10(PO4)6(OH)2). Отношение кальций/фосфор в норме составляет ≈1,3-2,0. Кроме того, в кости обнаружены ионы магния, натрия, калия, сульфата, карбоната, гидроксильные и другие ионы, которые могут принимать участие в образовании кристаллов. Каждое коллагеновое волокно компактной кости построено из периодически повторяющихся сегментов. Длина сегмента волокна составляет ≈64 нм (64.10-10 м). К каждому сегменту волокна примыкают кристаллы гидроксиапатита, плотно его опоясывая.

Помимо того, сегменты примыкающих коллагеновых волокон перекрывают друг друга. Соответственно, как кирпичи при кладке стены, перекрывают друг друга и кристаллы гидроксиапатита. Такое тесное прилегание коллагеновых волокон и кристаллов гидроксиапатита, а также их перекрытия, предотвращают «разрушение сдвига» кости при механических нагрузках. Коллагеновые волокна обеспечивают эластичность, упругость кости, ее сопротивление растяжению, в то время как кристаллы обеспечивают её прочность, жесткость, ее сопротивление сжатию. Минерализация кости связана с особенностями гликопротеидов костной ткани и с активностью остеобластов. Различают грубоволокнистую и пластинчатую костную ткань. В грубоволокнистой костной ткани (преобладает у зародышей; у взрослых организмов наблюдается только в области черепных швов и местах прикрепления сухожилий) волокна идут неупорядоченно. В пластинчатой костной ткани (кости взрослых организмов) волокна, сгруппированные в отдельные пластины, строго ориентированы и образуют структурные единицы, называемые остеонами.

К сведению в организме:

  1. От 208 до 214 индивидуальных костей.
  2. Нативная кость состоит из 50% неорганического материала, 25% органических веществ и 25% воды, связанной с коллагеном и протеогликанами.
  3. 90% органики составляет коллаген типа 1 и только 10% другие органические молекулы (гликопротеин остеокальцин, остеонектин, остеопонтин, костный сиалопротеин и другие пртеогликаны).
  4. Костные компоненты представлены: органическим матриксом - 20-40%, неорганическими минералами - 50-70%, клеточными элементами 5-10% и жирами - 3%.
  5. Макроскопически скелет состоит из двух компонентов - компактная или кортикальная кость; и сетчатая или губчатая кость.
  6. В среднем вес скелета составляет 5 кг (вес сильно зависит от возраста, пола, строения тела и роста).
  7. Во взрослом организме на долю кортикальной кости приходится 4 кг, т.е. 80% (в скелетной системе), тогда как губчатая кость составляет 20% и весит в среднем 1 кг.
  8. Весь объем скелетной массы у взрослого человека составляет примерно 0.0014 м³ (1400000 мм³) или 1400 см³ (1.4 литра).
  9. Поверхность кости представлена периостальной и эндостальной поверхностями - суммарно порядка 11,5 м² (11500000 мм²).
  10. Периостальная поверхность покрывает весь внешний периметр кости и составляет 4.4% грубо 0,5 м² (500000 мм²) всей поверхности кости.
  11. Внутренняя (эндостальная) поверхность состоит из трех составляющих
    1. внутрикортикальная поверхность (поверхность Гаверсовых каналов), которая составляет 30.4% или грубо 3,5 м² (3500000 мм²);
    2. поверхность внутренней стороны кортикальной кости порядка 4.4% или грубо 0,5 м² (500000 мм²) и
    3. поверхность трабекулярного компонента губчатой кости 60.8% или грубо 7 м² (7000000 мм²).
  12. Губчатая кость 1 гр. в среднем имеет поверхность 70 см² (70000 см²: 1000 гр.), тогда как кортикальная кость 1 гр. имеет порядка 11.25 см² [(0.5+3.5+0.5) х 10000 см²: 4000 гр.], т.е. в 6 раз меньше. По мнению других авторов это соотношение может составлять 10 к 1.
  13. Обычно при нормальном обмене веществ 0.6% кортикальной и 1.2% губчатой костной поверхности подвергается разрушению (резорбции) и, соответственно, 3% кортикальной и 6% губчатой костной поверхности вовлечены в формирование новой костной ткани. Остальная костная ткань (более 93% её поверхности) находится в состоянии отдыха или покоя.

Различают пластинчатую и грубоволокнистую (ретикулофиброзную) костную ткани.

Грубоволокнистаякостная ткань (ретикулофиброзную) обнаруживается у плодов, а у взрослых – в местах прикрепления сухожилий мышц к костям, в местах зарастания черепных швов, в зубных альвеолах, в костном лабиринте внутреннего уха. В любом возрасте этот вид костной ткани может появляться в ответ на повреждение, в результате лечения, стимулирующего костеобразование, а также при нарушениях метаболизма, воспалительных и неопластических процессах.

Грубоволокнистая костная ткань характеризуется высокой скоростью формирования и обмена. Межклеточное вещество грубоволокнистой костной ткани состоит из мощных пучков коллагеновых волокон, расположенных параллельно или под углом друг к другу, большого количества протеогликанов и гликопротеинов и имеет низкое содержание минеральных солей.

Плотность расположения остеоцитов более высокая, чем в пластинчатой костной ткани. Остеоциты уплощены, лежат в лакунах и не имеют определенной ориентации по отношению к волокнам.

Пластинчатаякостная ткань отличается от ретикулофиброзной костной ткани упорядоченным расположением коллагеновых волокон в составе костных пластинок. Костные пластинки, в свою очередь, формируют параллельные концентрические слои – остеоны - структурно-функциональные единицы пластинчатой кости. Остеоны вместе с другими костными пластинками (наружные, внутренние периферические (генеральные) пластинки, интерстициальные пластинки) формируют основную массу компактной кости человека. Суммарно в составе компактной кости минеральный компонент матрикса по весу в процентном отношении несколько меньше органического.

Клетки костной ткани.

Клетки костной ткани происходят из двух клеточных линий: плюрипотентных мезенхимальных стволовых клеток и гемопоэтической стволовой клетки. Предшественники мезенхимальных клеток – «колониестимулирующие единицы» - дифференцируются в преостеобласты, располагающиеся вблизи костных поверхностей, которые при наличии соответствующих условий могут дифференцироваться в остеобласты. Дифферон костной ткани может быть представлен следующим рядом: остеогенная клетка (преостеобласт) остеобласт остеоцит .

Гемопоэтическая стволовая линия состоит из циркулирующих или костномозговых моноцитов, дифференцирующихся в преостеокласты и остеокласты. Мезенхимальные клетки, дифференцирующиеся в остеобласты, содержатся в костных каналах, эндосте, периосте и костном мозге. Еще один источник преостеобластов составляют васкулярные перициты. Клетки мезенхимы имеют неправильную форму, крупное ядро, окруженное узкой цитоплазмой, практически не содержащей мембранных органелл. На процесс дифференцировки клеток влияет щелочная фосфатаза, остеогенный фактор – костный морфогенетический белок (BMP–bonemorphogeneticprotein) иpO 2 (парциальное давление кислорода). При высоких значенияхpO 2 остеогенные клетки дифференцируются в остеобласты, при низких – в хондробласты.

Остеобласты относят к клеткам, формирующим костную ткань. Они располагаются на поверхности кости и плотно прилежат к соседним клеткам. Часть клетки, обращенная к новообразованному органическому матриксу, содержит преимущественно ГЭС, в то время как ядро находится на противоположном полюсе клетки. Остеобласты отличают по ассиметрично расположенному ядру. Основная функция остеобластов – синтез и секреция органического матрикса кости (коллагеновые и неколлагеновые белки), включающие внутри- и внеклеточные этапы. Внутриклеточный этап заключается в биосинтезе и процессинге коллагенаIтипа, секреции и экскреции его во внеклеточное пространство. Внеклеточный этап связан с формированием микрофибрилл, фибрилл и организации их в коллагеновые волокна, образующих сложно организованный коллагеновый каркас. Наряду с этим, остеобласты синтезируют и неколлагеновые белки (гликопротеины, остеонектин, остеокальцин, костный сиалопротеин, остеопонтин и др.), а также коллагеназу и активатор плазминогена. Маркером остеобластов является синтезируемый ими фермент щелочная фосфатаза. Остеобласты принимают участие в контроле обмена электролитов, минерализации кости посредством синтеза продуктов матрикса и образования матриксных везикул. Кроме того, системные факторы, в частности, паратгормон и цитокины могут стимулировать остеобласты к высвобождению факторов, активирующих остеокласты.

Остеобласты разделяют на активные и покоящиеся. Активные остеобласты формируют остеоид, период созревания которого около 10 суток.

Активные остеобласты– это крупные клетки кубической или цилиндрической формы диаметром 20 – 40 мкм, покрывающие 2 – 8% поверхности кости. Они имеют короткие микроворсинки, базофильную цитоплазму и эксцентрично расположенное ядро, богатое РНК. Ядро занимает до трети объема клетки и характеризуется преобладанием эухроматина над гетерохроматином, который беспорядочно распределен вдоль внутренней поверхности ядерной оболочки. В кариоплазме определяются одно или два ядрышка, окруженные гетерохроматином. В цитоплазме имеется хорошо развитая ГЭС с умеренной плотностью упаковки цистерн и канальцев, большое количество свободных рибосом и полирибосом. Митохондрии - преимущественно вытянутой формы, с низкими кристами, зачастую содержат кальций. Комплекс Гольджи хорошо развит и представлен уплощенными мешочками и секреторными пузырьками. Выявляются лизосомы и окаймленные пузырьки. В цитоплазме дифференцирующихся остеобластов определяются скопления гранул гликогена, которые, однако, отсутствуют в клетках, формирующих костную ткань. Имеются и липидные включения. Высока активность щелочной фосфатазы. Остеобласты выделяют матриксные пузырьки, содержащие липиды,Ca 2+ , щелочную фосфатазу и другие фосфатазы, что приводит к кальцификации остеоида. Минерализованный матрикс замуровывает клетку, и она превращается в остеоцит. Основной функцией активных остеобластов является синтез и секреция компонентов органического матрикса кости, выработка матриксных пузырьков, принимающих участие в минерализации, цитокинов и факторов роста. В активных остеобластах может снижаться синтетическая деятельность, и они превращаются в покоящиеся остеобласты или, продуцируя и окружая себя матриксом, - в остеоциты.

Наряду с остеокластами, резорбцию межклеточного вещества по стенкам канала остеона осуществляют и остеобласты. При интенсивной остеолитической активности группы рядом лежащих остеобластов, формируют лакуны остеобластической резорбции.

Покоящиеся остеобласты– это клетки, которые находятся на поверхности костной ткани, формируя своеобразную выстилку, играющую важную роль в обеспечении барьера крови – кость, но не принимают участия в формирования кости. Эти клетки имеют удлиненную и уплощенную форму, большое количество цитоплазматических островков, формирующих контакты с отростками других остеоцитов. Плотность расположения мембранных органелл в таких клетках по сравнению с активными остеобластами значительно снижена. Под влиянием паратиреоидного гормона эти клетки синтезируют ферменты, разрушающие остеоид, что в дальнейшем облегчает прикрепление остеокласта к костной ткани, и рассматривается как первый этап в резорбции кости.

Остеоциты – высокодифференцированные клетки, происходящие из остеобластов, окруженные минерализованным костным матриксом и располагающиеся в остеоцитарных лакунах, заполненных коллагеновыми фибриллами.

В зрелом скелете человека остеоциты составляют 90%. Клетки имеют вытянутую форму, размер около 15 × 45 мкм, содержат одно небольшое ядро, окруженное бедной органеллами цитоплазмой, в которой определяются округлой формы митохондрии и свободные рибосомы. Комплекс Гольджи развит слабо. Объем лизосом и ГЭС зависит от функционального состояния остеоцитов. От тел остеоцитов отходят длинные (50-60 мкм) цитоплазматические отростки, толщиной 5-6 мкм, располагающиеся в канальцах и анастомозирующие с соседними клетками. Плотность расположения остеоцитарных лакун высокая, около 25 000 на 1 мм 3 . Через цитоплазматические отростки осуществляется контакт остеоцитов между собой и с остеобластами эндоста или периоста. Контакты формируются на стадии остеоида, в последующем они образуют сеть, пронизывающую минерализованный костный матрикс (каналикулы). Периостеоцитарные пространства между плазматической мембраной остеоцита и матриксом содержат интерстициальную жидкость, по которой метаболиты поступают к клеткам. Общая плотность периостеоцитарных пространств в костях человека составляет от 1000 до 5000 м 2 , а объем – 1 – 1,5 л. В этих пространствах содержитсяCa 2+ , концентрация которого равна 0,5 ммоль/л, что практически в 3 раза ниже концентрации в плазме крови. Возможно, за счет этого осуществляется постоянный притокCa 2+ в костную ткань.

Основная функция остеоцитов – обеспечение обмена воды, белков и ионов в костной ткани. Остеоциты принимают участие в остеоплазии и остеолизе, хотя в отношении последнего имеются противоречивые точки зрения. Биосинтетическая активность остеобластов и остеоцитов, а в связи с этим и организация межклеточного вещества, зависят от величины и направленности вектора нагрузки, а также характера и величины гормо­нальных влияний. В связи с этим костная ткань - это лабильная, интенсив­но меняющаяся структура.

Остеокласты. Остеокласты - клетки, осуществляющие резорбцию кост­ной ткани. Они возникают из гемопоэтических гранулоцитарно-макрофагальных колониеобразующих единиц (КОЕ), являющихся предшественни­ками моноцитов/макрофагов. Об этом свидетельствует экспрессия на мемб­ранах остеокластов рецепторов Fc, СЗ и других мембранных маркеров макрофагов. В настоящее время не установлен механизм, который приводит к перемещению макрофагов между остеобластами к ненагружаемым участкам межклеточного вещества кости и к слиянию макрофагов с образованием многоядерных клеток - остеокластов. На их формирование влияют интерлейкин-3 и 1,25 дигидроксивитамин D 3 . Остеокласты - многоядерные крупные клетки размером до 150 - 180 мкм. В клетке может содержаться от 4 до 20 ядер. Ядра остеокластов практически одинаковой величины, формы и структуры. Они располагают­ся в центральной части клетки, имеют овально-вытянутую форму; эухроматин преобладает над гетерохроматином.

Остеокласты имеют куполообразную форму, с четкой дифференциацией структуры на 4 зоны: гофрированный край, светлую, везикулярную и базальную зоны. На рабочих участках плазмолемма остеокласта разделяется на светлую зону и гофрированный край.

Светлая зона - это зона прикрепления остеокласта к костной ткани. Благодаря плотному прикреплению создается замкнутое пространство, в ко­тором поддерживается высокая концентрация катионов Н+ и протеолитических ферментов. В ней не содержится мембранных органелл, цитоплазма низкой плотности. В большом количестве определяются актиновые микрофиламенты, принимающие участие в формировании контакта остеокласта с поверхностью минерализованной кости. Адгезия остеокласта к костному матриксу опосредуется рецепторами. Для рецептора витронектина расшиф­рована специфическая аминокислотная последовательность белков матрикса - Arg-Gly-Asp.

Гофрированный край имеет мелкие выросты цитоплазмы различной величины, довольно плотно прилежащие друг к другу, направленные к по­верхности кости, между которыми определяются фрагменты резорбируемого костного межклеточного вещества. Протяженность гоф­рированного края остеокластов днем в 2 раза больше, чем ночью. Эти дан­ные коррелируют с циркадианным ритмом формирования костного матрикса и свидетельствуют о наличии биологического ритма резорбции кости остеокластами. Показано, что гофрированная каемка остеокластов является динамичной структурой и образуется только при контакте с костным межклеточным веществом, но отсутствует при перемещении остео­класта.

Рабочая часть поверхности остеокласта, как правило, глубоко погружена в резорбируемое межклеточное вещество, образуя остеокластическую лаку­ну резорбции (лакуну Хаушипа). В местах размещения нескольких остео­кластов микроскопически определяется изъеденный за счет лакун контур межклеточного вещества костной ткани. В образовании резорбционной лакуны принимают участие ферменты тирозинкиназа, цистеиновые протеиназы. Кроме того, резорбционная активность остеокластов зависит от уров­ня коллагеназы, ионов водорода и кислородных свободных радикалов. Че­рез мембрану остеокласта в области гофрированного края секретируется два типа продуктов, приводящих к деструкции костной ткани: через протонный насос выделяются катионы Н+, активация функционирования которого приводит к секреции протонов, закислению в очаге резорбции (рН снижа­ется от 7 до 4) и растворению минералов кости. Катионы Н+ образуются из Н 2 СО 3 . Органический костный матрикс (остеоид) препятствует взаимо­действию остеокластов с минерализованной костной тканью. Он разрушает­ся катепсинами и коллагеназой, секретируемыми остеобластами и остеокла­стами.

Везикулярная зона остеокласта, расположенная вблизи гофрированного края, содержит многочисленные лизосомы. В базальной зоне остеокласта в цитоплазме обнаруживаются ядра, развитый комплекс Гольджи со зна­чительным количеством цистерн и секреторных пузырьков и умеренно раз­витая ГЭС. Митохондрии определяются в довольно большом количестве между ядром и плазмолеммой на участках, противоположных рабочим, и являются показателем активности остеокластов. Остеокласты могут пе­редвигаться с одного участка резорбции на другой. После выполнения резорбционной функции остеокласт может разделиться на мононуклеарные клетки. Регуляция функциональной активности остеокластов осуществляет­ся остеобластами, системными и локальными факторами, представленными в таблице:

Факторы, регулирующие функциональную активность остеокластов

Факторы

Стимулирующие

Ингибирующие

Системные

Паратгормон (ПТГ)

Кальцитриол (1,25(ОН) 2 D 3)

Тироксин (Т 4)

Кальцитонин

Эстрогены

Тестостерон

Локальные

Интерлейкины (IL-1, IL-3, IL-6, IL-11)

Факторы некроза опухолей (TNF α , TNF β)

Макрофагальный колониестимулирующий фактор (M-CSF)

Гранулоцитарно-макрофагальный колониестимулирующий фактор (GM-CSF)

Фактор стволовых клеток (SCF)

Простагландины

Интерферон γ(IFN Y)

Трансформирующий фактор

роста (TGF β)

Интерлейкины (IL-4, IL-13)

МАТРИКС КОСТНОЙ ТКАНИ

Матрикс костной ткани занимает 90% ее объема, остальная часть прихо­дится на клетки, кровеносные и лимфатические сосуды. Костный матрикс состоит из органического и минерального компонентов. Неорганические компоненты составляют около 65% веса кости, органические компоненты - 20%, на долю воды приходится около 10%.

Органический матрикс. Основу органического матрикса (90%) составляет коллаген I типа с небольшим количеством (5%) коллагенов III, IV, V и XII типов. Коллаген I типа образует волокна с большим диаметром, что харак­теризует их прочность к растяжению и нагрузкам. Минерализация осуществляется вдоль фибрилл коллагена I типа. Остальные 5% составляют неколлагеновые белки (остеокальцин, остеонектин, костные сиалопротеины, костные фосфопротеины, костный морфогенетический белок, протеолипиды, гликопротеины и костно-специфические протеогликаны). Неколлагеновые белки влияют на формирование кости, минерализацию и активность клеток. Остеонектин обладает высоким сродством к костной ткани и коллагену I типа, регулирует рост кристаллов, что обусловливает его важную роль в кальцификации. Неколлагеновые белки (фибронектин, костный сиалопротеин, остеопонтин и тромбоспондин) обеспечивают межклеточные взаимодействия, ремоделирование костной ткани (остеокальцин), выступают как стимуляторы кальцификации (фосфопротеины). Костные протеолипиды, фосфопротеины связываются с кальцием, стимулируют минерализацию и рост кристаллов. Протеогликаны обеспечивают консолидацию коллагеновых фибрилл и связь коллагенов с кристаллической фазой матрикса. Низко­молекулярные протеогликаны влияют на формирование фибрилл коллагена I типа, стимулируют скорость их образования, а также прирост в толщину и длину. Структуре «коллаген-протеогликаны-кристалл» придается важ­ная роль в обеспечении механических свойств костной ткани. Костный матрикс содержит цитокины и факторы роста, часть из которых яв­ляется продуктом синтеза остеобластов; другие, вероятно, мигрируют в кость из прилежащих тканей. Такие факторы роста, как трансформи­рующий фактор роста бета (TGFβ) и инсулиноподобный фактор роста - 1 (GF-1) синтезируются остеобластами и стимулируют их рост по принципу аутокринного и (или) паракринного эффекта.

Неорганический матрикс. Минеральный компонент межклеточного вещества бывает в двух основных формах - аморфной и кристаллической. Аморфный фосфат кальция составляет 60% минеральной фазы. Это гранулы округлой формы размером от 5 до 20 нм. Растворимость фосфата кальция выше, чем у апатита, что имеет важное биологическое значение для обеспечения постоянства концентрации кальция в интерстициальной жидкости. Он представляет собой лабильный резерв ионов кальция и фосфора. Аморф­ный фосфат кальция - продукт жизнедеятельности костной клетки и его осаждение также регулируется клеткой. 6% объема минеральной фазы составляет СаСОз, около 1,5% - MgPО 4 . В костной ткани содержатся: свинец (хлориды и фториды), стронций, радий, барий, калий и натрий. Последний составляет около 50% всей его массы в организме. Небольшая доля приходится на окта-, ди-, три-, β-трикальцийфосфат, брунеит и другие вещества. Значительный объем в кости занимают кристаллы гидроксиапатита разме­ром от 10 до 150 нм. С особенностью организации кристаллической фазы кости связаны основные функциональные свойства - прочность, метабо­лизм, жизнеспособность и др. Показано, что при остеопорозе изменяются размеры кристаллов гидроксиапатита, их физико-механические и биохими­ческие свойства.

Минерализация костной ткани. Механизмы минерализации кости до кон­ца не раскрыты. Предполагают, что существует несколько механизмов био­минерализации. На основе одних механизмов осуществляется минерализа­ция пластинчатой костной ткани, других - хрящевой ткани и грубоволокнистой костной ткани.

Минерализация пластинчатой костной ткани протекает следующим об­разом. Вначале осуществляется биосинтез коллагена, ГАГ, протеогликанов и гликопротеинов. Коллаген определенным образом располагается в кост­ной ткани. Согласно этой модели, молекулы коллагена пере­крываются лишь на 9% их длины. Линии молекул располагаются уступами латерально и формируют фибриллы с отверстиями между концами моле­кул - зоны отверстий, а область, состоящая из неперекрывающихся мо­лекул, названа зоной перекрытия. Минеральные вещества, имеющиеся в костной ткани, откладываются внутри фибрилл и между ними (преимуще­ственно в зоне отверстий), с последующим распространением в противоположном направлении от зоны перекрытий вплоть до полной минерализации фиб­риллы. Периодичность ми­неральной фазы равна около 70 нм, т. е. соответствует пе­риоду коллагеновых фиб­рилл.

Транспорт остеотропных ионов исследован с помощью радионуклида 45 Са. Фрак­ция, содержащая кальций, переносится через эндотелиальную стенку гемокапилляра в межклеточное простран­ство, откуда перемещается в остеобласты. Через 15 мин. после введения 45 Са 60% метки выявляется над осте­областами, а через 40 мин. почти в одинаковой концентрации метка об­наруживается над клетками и над ближайшими областями межклеточного вещества. Через 6 ч более 60% метки определяется над межклеточным веще­ством. Помимо опосредованного транспорта (межклеточное пространст­во → остеогенные клетки → костный матрикс) допускается прямой путь че­рез межклеточное пространство в костный матрикс. Морфологически участ­ки минерализации представляют собой электронно-плотные частицы, рас­положенные между коллагеновыми волокнами.

Существенную роль в процессах биоминерализации хрящевой ткани и грубоволокнистой костной ткани играют матриксные пузырьки, или вези­кулы, насыщающие органический матрикс кристаллами гидроксиапатита, что создает условия для формирования кристаллов. Матриксные пузырьки представляют собой небольшие образования (около 100 нм и более в диа­метре), которые отделяются от клеточной мембраны в межклеточное про­странство путем экзоцитоза. В матриксе они служат ядрами формирова­ния кристаллов гидроксиапатита. Первичные ядра минерализации возни­кают на реакционноспособных группах нативных коллагенов фибрилл, комплексообразующие группировки которых обладают высоким сродством к различного рода минералам. Однако эти реакционноспособные группы блокированы сульфатированными ГАГ, обеспечивающими пространствен­ную ориентацию макромолекул коллагена и насыщение их макро- и микро­элементами. С участием гиалуронидаз и протеаз происходит деполимериза­ция кислых ГАГ с освобождением аминогрупп, которые связывают Са 2+ и РО 4 3- с образованием ядер кристаллизации.

Согласно другой гипотезе, основную роль в минерализации играют фер­менты: щелочная фосфатаза, АТФаза, фосфорилаза - отщепляющие неорганический фосфат от органического субстрата. В частности, щелочная фосфатаза высвобождает неорганический фосфат из эфиров. В результате фор­мируется локальный избыток ионов фосфора и кальция, и образуются преципитаты фосфора и кальция. Кроме того, щелочная фосфатаза действу­ет как трансфераза и обеспечивает фосфорилирование коллагена. Минера­лизация коллагена I типа начинается на поверхности фибрилл, а затем рас­пространяется вглубь, формируя непрерывную минеральную фазу. Опреде­ленную роль в процессе связывания ионов играет остеокальцин, главный неколлагеновый белок кости, и β-глицерофосфат.

Важным процессом, происходящим при минерализации, является разру­шение ингибиторов минерализации. По мнению одних исследователей, в та­кой роли выступают протеогликаны, которые разрушаются деполимеризующими ферментами типа гиалуронидазы и протеазы. Другие полагают, что ин­гибиторами кальцификации коллагена являются пирофосфаты, фосфонаты и дифосфонаты. Инактивация этих ингибиторов происходит под воздействи­ем фермента пирофосфатазы, разрушающего неорганический пирофосфонат.

Таким образом, процесс минерализации является как ферментативным, так и физико-химическим. Вокруг сформировавшихся кристаллов гидроксиапатита удерживается гидратный слой, что обеспечивает условия для бы­строго обмена неорганических ионов между поверхностным слоем кристал­ла, гидратной оболочкой и внеклеточной жидкостью. Интенсивность об­мена кальция между внеклеточной жидкостью и минерализованным матриксом зависит от концентрационных различий в солевом составе кос­ти, плазмы крови, а также от активности метаболических процессов, проис­ходящих в клетках. С повышением минерализации костной ткани снижают­ся микроциркуляция, диффузия и обмен ионов.

СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ЕДИНИЦЫ

Исходной структурно-функциональной единицей опорных структур в губчатом веществе кости является костная перекладина, или трабекула , обра­зованная костной тканью, а в компактной кости - остеон. Основным фор­мообразующим фактором костной трабекулы является вектор нагрузки, величина и направленность которого определяет ориентацию макромолекулярных компонентов межклеточного вещества. Костная трабекула формиру­ется как пространственная система, противодействующая вектору нагрузки. Перестройка костной трабекулы осуществляется за счет остеосинтетической и остеолитнческой активности остеобластов, остеоцитов и остеокластов. Отложение новообразованного костного межклеточного вещества на поверхности костной трабекулы в одних участках и рассасывание в других дают возможность в сравнительно короткие сроки существенно изменить ориентацию костной трабекулы. Наименее нагружаемые участки подвергаются рассасыванию с помощью остеокластов. Вместе с тем, следует отметить, что костная трабекула может иметь различную форму, обеспечивая выполнение опорной функции только при противодействии одному вектору, т.е. в одной плоскости. Учитывая, что организм человека испытывает действие векторов нагрузки как минимум в трех плоскостях, костная трабекула является исходной структурой для более слож­ных трехмерных опорных конструкций.

Такой конструкцией явля­ется костная ячейка , которую в идеальном при­ближении можно считать кубом, имеющим вход во внутреннее пространство че­рез одну из стенок, Костные трабекулы одной стен­ки переходят без границы в костные трабекулы дру­гих стенок. Костная ткань ячеек окружена средой: по наружной поверхности - это соединительная, а по внутренней - ретикулярная ткани. Все остальные тканевые компоненты – микроциркуляторное русло, нервные элементы и клетки иммунной системы располагаются в ячейке и вблизи костной трабекулы.

Следует подчеркнуть две особенности. Одна заключается в том, что в момент формирования ячейки лимфатические капилляры образуются только по ее наружной поверхности, а не внутри ее и, таким образом, внутриячеистого лимфатического русла нет. Артериальный приток в пространст­ве внутри ячейки происходит под несколько большим давлением и это обусловливает повышенное давление тканевой жидкости во внутриячеистом пространстве, препятствует формированию лимфатических капилляров. Вторая особенность связана с тем, что пространство внутри ячейки оказы­вается благоприятной средой для очагов кроветворения.

Высокие биомеханические качества костных ячеек определяют возмож­ность построения из них крупных и прочных макроскопических опорных структур и, в связи с этим, большинство коротких костей построены из ячеек. В длинных костях, где величины нагрузок существенно возрастают, система ячеек не обеспечивает необходимую прочность, и они трансформируются в многослойные разветвленные трубчатые системы – остеоны, формирующие пластинчатую костную ткань. Взаимоотношения между структурно-функциональными единицами кости складываются на этапах развития костей скелета в за­висимости от распределения вектора нагрузки. В связи с этим эпифизы построены из ячеек, а в метадиафизе опре­деляется переход от ячеек к остеонам. Диафизы костей состоят из остеонов, наруж­ных и внутренних генераль­ных пластинок, а во внут­реннюю полость кости обра­щены отдельные костные трабекулы.

Остеон состоит из систе­мы связанных между собой костных пластинок, окружа­ющих центральный канал. Остеоциты располагаются между слоями костных пластинок. Снаружи остеон ограничен линией цементации, отделяющей его от других остеонов. Центральный канал заполнен соединительной тканью, в которой размещаются кровеносные лимфатические сосуды и нервные волокна.

Используя тетрациклиновую метку, было доказано, что время образо­вания остеонов в семилетнем возрасте составляет около 40 суток, а после 40 лет увеличивается до 79 суток. Остеон представляет собой такую же дина­мичную структуру, как и костная пластинка и ячейка, и в ответ на увеличе­ние нагрузки происходит образование новых слоев костной ткани по внут­ренней поверхности его центрального канала, что ведет к возрастанию ко­личества пластинок и сужению просвета канала. При уменьшении нагрузки остеолитическая деятельность остеобластов внутренней поверхности канала ведет к уменьшению количества пластинок у остеонов и расширению про­света центрального канала.

Остеоны разделяют на три группы: 1) растущие остеоны с хорошо выраженным центральным каналом и узким ободком остеоидной костной ткани под слоем остеобластов. Сосуды канала, как правило, расширены и заполнены кровью; 2) зрелые, покоящиеся остеоны, с узким просветом центрального канала, слабо выраженным слоем уплощенных остеобластов и с суженным просветом сосудов; 3) представлена остеонами резорбционного типа, которые характеризуются расширенным центральным каналом, имеющим неровные контуры в связи с резорбцией костной ткани остеобла­стами. В просвете центрального канала определяется значительное количество клеточных элементов, расширенные и заполненные кровью сосуды. Изменение величины нагрузки создает условия для перехода от растущих остеонов к зрелым формам и от зрелых к резорбционным, а также от резорбционных остеонов к зрелым, что создает гетероморфность остеонов в пределах кости. Перестройка остеонов продолжается всю жизнь. Число остеонов, приходящихся на единицу площади среза в пластинчатой кости, с годами уменьшается. Кроме того, в молодом возрасте остеоны имеют более крупные размеры, а в старческом их диаметр значительно уменьшен, а по внутренней поверхности формируется гиперкальцифицированное кольцо. Резорбцию межклеточного вещества по стенкам канала остеона осуществляют остеокласты и остеобласты. Между остеонами располагается слой пластинок, получивший название вставочные. Коллагеновые волокна в костных пластинках имеют упорядоченное расположение - под углом к волокнам соседних пластинок, что обеспечивает прочностные свойства. Здесь же обнаруживаются костные канальцы, содержащие отростки остеоцитов. Тела остеоцитов располагаются в лакунах.

Интерстициальные каналы компактной кости включают два звена микроциркуляции, которые являются единой трофической системой. Первое звено - это центральные, прободающие и соединительные каналы, содержащие кровеносные сосуды. Центральные каналы располагаются в центре остеона, имеют различный диаметр (от 30 до 150 мкм), стенки этих каналов образованы костными пластинками. Они ориентированы, в основном, вдоль длинной оси кости, и лишь отдельные из них имеют тангенциальную ориентацию. Прободающие каналы (диаметр от 30 до 60 мкм) располагаются в кости по направлению от периоста и эндоста к центральным каналам. Соединительные каналы выполняют роль анастомозов между центральными каналами.

Второе звено - лакунарно-канальцевая система, которая обеспечивает обмен между остеоцитами и кровью. Лакуны остеоцитов в кости разделяют на 5 типов в зависимости от функциональной активности клеток: 1) неак­тивная лакуна, имеющая ровные границы, характеризует фазу покоя остео­цитов, на этой фазе поддерживается тонкая регуляция гомеостаза кальция и фосфора; 2) остеолитическая лакуна - лакуна больших размеров и не­правильной формы, остеоциты, располагающиеся в таких лакунах, содержат большое количество лизосом и осуществляют периостеоцитарный остеолиз (синоним: остеоцитарная остеоклазия); 3) остеопластическая лакуна - по стенкам лакуны определяется большое количество новообразованных радиально расположенных коллагеновых волокон; методом тетрациклиновой метки доказано, что разрушение кости и ее созидание происходят синх­ронно, остеоциты, располагающиеся в таких лакунах, содержат развитую ГЭС; 4) пятнистая лакуна, остеоциты, располагающиеся в лакуне, окруже­ны ореолом из кальцифицированного и некальцифицированного матрикса, обычно такие лакуны определяются в костной ткани при патологических состояниях (флюорозе, рахите и др.); 5) пустая лакуна, содержащая продукты распада остеоцитов; после гибели остеоцитов такие лакуны окружены сверхминерализованной мертвой тканью.

Клеточные лакуны соединяются с канальцами, формируя единую лакунарно-канальцевую систему.

Надкостница (периост). На поверхности кости формируется надкостница. В ней различают два слоя - внутренний остеогенный (камбиальный) и наружный фиброзный.

Внутренний слойнадкостницы включает остеогенные клетки, ко­торые способны дифференцироваться в хрящевые или костные. Клеточные элементы надкостницы располагаются в три слоя: первый состоит из преостеобластов, мелких стволовых клеток; второй - из остеобластов, между которыми располагаются капиллярные петли, и третий - из фибробластов, формирующих коллагеновый каркас. Ультраструктура этих клеток вариа­бельна и зависит от степени дифференцировки. Цитоплазма у малодифференцированных клеток базофильна, определяется высокая плотность сво­бодных рибосом, что свидетельствует об интенсификации ростовых процес­сов. По мере дифференцировки клеток возрастает объем ГЭС. Клетки остеогенного слоя надкостницы принимают участие в процессах перестрой­ки кости, при развитии и росте.

Наружный слойнадкостницы представлен плотной волокнистой соединительной тканью, состоящей из коллагеновых волокон, небольшого числа эластических волокон и фибробластов. Надкостница содержит сосу­ды, переходящие в мягкие ткани. В наружном слое надкостницы имеется сеть лимфатических сосудов. В остеогенном слое капиллярные петли располагаются межу остеобластами. Надкостница прочно крепится к поверхности кости за счет пучков прободающих волокон (волокон Шарпея).

Эндост. Со стороны костного мозга кость выстлана тонкой оболочкой, аналогичной периосту. Однако граница между наружным и внутренним слоями менее выражена. В покоящейся кости в нем обнаруживается непре­рывный слой неактивных плоских остеогенных клеток. Слой остеогенных клеток может быть нарушен деятельностью остеокластов, выполняющих резорбцию костного матрикса для пополнения потребности организма в каль­ции. Остеогенные потенции клеток эндоста проявляются в условиях резорб­ции, при переломах, развитии и росте.

ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ И ФИЗИОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ

Кости у мужчин и женщин формируются приблизительно до 25 лет. До 40 лет масса костной ткани практически не изменяется, а затем - до 50 лет идет ее небольшая потеря (до 0,4% в год). У женщин потеря костной ткани более высокая и составляет 0,9-1,1%. К 90 годам у мужчин убыль костной ткани достигает 18,9%, в то время как у женщин - 32,4%. Изменения в губ­чатой кости происходят намного раньше, чем в компактной. Количество трабекул уменьшается на 45% при постклимактерических остеопорозах.

Костная ткань - динамическая система, которая на этапах развития и зрелости характеризуется определенным соотношением компонентов и обновлением. Так, остеокальцин, например, в 50-100 раз больше связывается со зрелой костью, чем с эмбриональной. В надкостнице с повышением возраста не определяется митотическая активность в остеобластическом слое. Снижается плотность расположения остеобластов на поверхности кости. Остеоциты местами разрушаются и в составе костной ткани обнаружи­ваются участки с пустыми лакунами остеоцитов. В связи с непрекращающимся переходом органических и минеральных компонентов межклеточно­го вещества в сосуды происходит сначала истончение, а затем рассасывание костных структур (возрастной остеопороз).

За счет снижения активности биосинтетических процессов в клетках в межклеточном веществе уменьшается содержание хондроитинсульфатов, играющих важную роль в кальцификации. Это приводит к формированию слабо- и среднеминерализованных остеонов. Накопление в субпериостальных областях кости кератансульфатов нарушает периостальное костеобразование, что приводит к снижению механической прочности кости и к пе­реломам. Качественные изменения выражаются в уменьшении доли гликопротеидов и в возрастании роли коллагеновых белков в составе органического матрикса. Это ведет к уменьшению содержания воды и при несущественном изменении прочности ткани к статическим нагрузкам, уменьшается ее прочность к динамическим нагрузкам, т. е. возрастает хруп­кость кости. Количественные изменения проявляются в уменьшении доли костной ткани в объеме участка кости.

Перестройка (ремоделирование) костной ткани. Продолжительность ре­зорбции у пациентов среднего возраста в губчатой кости составляет 40-50 сут., в компактной - 30 сут. В этом возрасте скорость обновления скелета составляет в среднем 8% массы костной ткани в год (в компактном веществе кости - около 4%, в губчатом - около 20%).

В физиологических условиях процессы ремоделирования, протекающие в костной ткани, должны обеспечить как структурно-поддерживающую функцию скелета, так и выполнение метаболической роли в минеральном гомеостазе. Ремоделирование губчатой кости происходит в несколько ста­дий: активация, резорбция, формирование остеоида и его минерализации. Первая стадия - активация остеокластов. На этой стадии к фо­кальному участку кости прикрепляются остеокласты. Фактор, который ини­циирует прикрепление остеокластов к кости, в настоящее время не установ­лен, но возможно, что микроповреждения кости могут явиться сигналом к их стимуляции. Вторая стадия ремоделирования - это формирование локуса резорбции. Полость глубиной 40-60 мкм формируется в течение 4-12 сут. В следующие 7-10 сут. на границе этой области накапливаются протеогликаны, глипротеины и кислая фосфатаза, но практически не опре­деляется коллаген. Эта фаза является пограничной между резорбцией кост­ной ткани и ее формированием. На третьей фазе происходит образование остеоида. Формируются линии цементации, в матриксе появляются такие белки как коллаген, трансформирующие факторы роста. Объем новообразо­ванного остеоида зависит от количества и активности остеобластов, в нем в поляризованном свете можно обнаружить характерное расположение пуч­ков коллагеновых волокон. Последняя стадия - минерализация остеоида. Первой ступенью в кальцификации является появление матриксных везикул, богатых щелочной фосфатазой, остеокальцина и др.

Ремоделирование пластинчатой кости представляет синхронный про­цесс разрушения-созидания остеонов.

Разработана концепция взаимодействия клеточных популяций при ремоделировании кости, которая основана на оценке единиц ремоделирования - базисной многоклеточной единицы (BMU), костной ремоделирующей единицы (BRU) и костной структурной единицы (BSU).

Согласно этой концепции, BMU - комплекс клеток (в основном, остео­бластов и остеокластов), которые участвуют в локальных процессах резорб­ции и формирования кости. В нормальной костной ткани имеет место чет­кая взаимосвязь и взаимозависимость процессов резорбции и восстановле­ния. Новая костная ткань формируется лишь на тех участках, где имели место процессы резорбции. Величина BMU у здоровых людей является по­стоянной по времени образования. С возрастом у человека изменяются следующие параметры: удлиняется время, требуемое на завершение образо­вания одной единицы; уменьшается число новых BMU, которые форми­руются в единицу времени. Это приводит к снижению интенсивности ремоделирования в физиологических условиях. BRU - это компоненты пере­страивающейся костной ткани. Суммарной активностью результатов ремоделирования является BSU. В случае компактной кости в качестве BSU выступает формирование вторичных остеонов. В губчатой кости BSU зани­мает площадь 0,5-1 мм 2 .

В скелетной ткани насчитывается около 35 миллионов BSU, каж­дая - объемом 0,05 мм 3 , 40% из них приходится на губчатую костную ткань. При нормальном росте и развитии подростков и лиц до 35 лет характерно повышенное костеобразование, что приводит к увеличению массы кости. При остеопенических состояниях, болезни Педжета, остеопетрозе и остеопорозах различного происхождения имеет место нарушение процессов ре­моделирования. Так, при болезни Педжета уровень костеобразования зна­чительно увеличен по сравнению с нормой, повышены и процессы ре­зорбции. Развитие остеосклероза при остеопетрозе связано с нарушением функции остеокластов.

Для остеопороза, который возникает вследствие хронического примене­ния глюкокортикоидов, характерно снижение костеобразования и увеличе­ние активности процессов резорбции. Постклимактерические остеопорозы характеризуются тем, что уровень костеобразования может не отличаться от нормы, но значительно увеличивается резорбция костной ткани. В условиях гиперпаратиреоза, гипертиреоза, хронического недостатка кальция в ор­ганизме, рассасывание превалирует над костеобразованием. Ситуация, ко­торая связана с повышением резорбции и костеобразования, характерна для процессов заживления переломов. Для людей зрелого возраста или при аутосомно-доминантной форме остеопетроза характерен высокий уровень формирования кости и низкий уровень резорбции, что приводит к увеличе­нию массы костных трабекул. В условиях сенильных остеопорозов уровень костеобразования значительно снижен, а резорбции - повышен. При медикаментозной терапии эстрогенами, а также солями кальция у пациенток с постменопаузальным остеопорозом отмечается положительный баланс процессов перестройки костной ткани, при этом уровень формирования кости соответствует норме, а уровень резорбции уменьшается. При нарушении процессов минерализации повышенное образование остеоида за счет высо­кой биосинтетической активности остеобластов может приводить к остео­маляции.

Гормональный контроль ремоделирования. Среди гормонов наиболее су­щественное влияние на метаболизм костной ткани и гомеостаз кальция ока­зывает паратгормон, витамин D и его метаболиты, и, в меньшей степени, кальцитонин. То или иное участие принимают почти все другие гормоны, продуцируемые железами организма, медиаторы и модуляторы.

Паратгормон. Паратгормон связывается преимущественно с клетками, располагающимися между матриксом кости и сосудами. Они отличаются от остеобластов ультраструктурной организацией - богаты гранулами гликоге­на, имеют вытянутые митохондрии, развитый комплекс Гольджи и большое количество микротрубочек. По локализации и строению такие клетки могут быть отнесены к преостеобластам. В меньшей степени метка гормона обна­руживалась в остеоцитах. Общий принцип действия паратгормона заключа­ется в том, что он связывается со специфическими рецепторами цитоплазматической мембраны, активизирует аденилатциклазу, что сопровождается повышением уровня цАМФ в клетках. Одновременно стимулируется по­ступление ионов кальция в клетку, подавление биосинтеза щелочной фосфатазы и коллагена. На более поздних этапах увеличивается выход ионов кальция из кости и повышение их концентрации в крови. Предполагается, что стимулированные паратгормоном остеобласты выделяют цитокины, ко­торые активируют остеокласты и их предшественники. В экспериментах in vitro доказано, что клетки остеобластического ряда при действии паратгор­мона выделяют фактор, стимулирующий колониеобразование гранулоцитов и макрофагов. Под влиянием паратгормона повышается митотическая ак­тивность остеобластов, что ведет к увеличению их количества. Усиливается остеолитическая активность остеобластов и остеоцитов. Этот процесс сопровождается рассасыванием костного межклеточного вещества и поступле­нием компонентов органического и неорганического матрикса кости в гемокапилляры. Остеокласты также реагируют на введение паратгормона. В них обнаруживается увеличение поверхности гофрированной каемки цитоплазматической мембраны, прилежащей к кости. При длительном введе­нии этого гормона происходит увеличение количества остеокластов. Меха­низм этого процесса неизвестен.

Кальцитонин. Действие гормона парафолликулярных эндокриноцитов щитовидной железы - кальцитонина - заключается в ингибировании остеокластической резорбции костной ткани. Он способствует уменьшению гофрированной каемки остеокластов. Под влиянием кальцитонина повыша­ется активность остеобластов и остеоцитов, что ведет к интенсивному пере­мещению молекул, необходимых для биосинтеза костного межклеточного вещества, из сосудистого русла в матрикс, способствуя насыщению межкле­точного вещества органическими и минеральными компонентами и к возрастанию прочности костных структур. Кальцитонин тормозит выход органических веществ и минеральных компонентов из клеточного матрикса. Наиболее существенное влияние паратгормона и кальцитонина зафиксиро­вано по уровню изменения концентрации ионов Са 2+ . За счет постоянного, но разнонаправленного действия паратгормона и кальцитонина, в организ­ме удерживается постоянство концентрации ионов Са 2+ в крови несмотря на колебания в поступлении и потреблении этих ионов всеми клетками ор­ганизма.

Витамин D и его метаболиты. На костную ткань оказывают прямое дей­ствие витамин D и его метаболиты. Витамин D представляет собой смесь витамина D 3 и витамина D 2 . D 3 образуется в коже под влиянием ультрафио­летового облучения, а D 2 - из эргостерина пищевых продуктов. Основное действие витамина D на костную ткань - это обеспечение ионами Са 2+ и РО 4 3- за счет стимуляции их всасывания в кишечнике. Витамин D и его ме­таболиты усиливают остеокластическую резорбцию кости, уменьшают син­тез коллагена остеобластами, стимулируют биосинтез инсулиноподобного фактора роста-I.

Гормон роста. Важным фактором, оказывающим выраженное действие на развитие костных тканей у детей, является гормон роста. У взрослых за счет стимуляции им процессов костеобразования, увеличивается масса кос­ти, а это приводит к деформациям кости. Гормон роста не влияет на тече­ние процессов резорбции. Его действие опосредуется рецепторами на остео­бластах, продуцирующих инсулиноподобные факторы роста.

Глюкокортикоиды. Глюкокортикоиды оказывают выраженное действие на формирование костной ткани. Они могут, как стимулировать, так и ингибировать процессы резорбции. Для роста костных тканей необходимы низ­кие дозы глюкокортикоидов, оказывающих стимулирующее действие на биосинтез коллагена. Избыток глюкокортикоидов ингибирует биосинтез коллагена и инсулиноподобного фактора роста-I, что снижает рост костей.

Половые гормоны. Эстрогены и андрогены стимулируют процесс костеоб­разования, принимают участие в росте костей и закрытии эпифизарной зоны роста. Доказано, что у женщин эстрогены замедляют процессы резорб­ции костной ткани.

Тиреоидные гормоны. Костная ткань чувствительна к изменению уровня в крови тиреоидных гормонов. Так, их дефицит приводит к нарушению раз­вития центров оссификации, а при избытке - стимулируется остеокластическая резорбция костной ткани, что сопровождается снижением плотности кости.

Инсулин и глюкагон. Механизм действия инсулина и глюкагона на кост­ные ткани изучен недостаточно. Выявлено, что недостаток инсулина у детей приводит к замедлению роста, в связи с чем он рассматривается как важный системный гормон, регулирующий рост костей. Инсулин стимулирует биосинтез макромолекул матрикса костей и хрящей, а также процессы минерализации костной ткани. В резорбции кости непосредственного участия принимает.

Глюкагон ингибирует резорбцию кости в культуре ткани, но в организме стимулирует секрецию кальцитонина и через него влияет на остеогенез.

Локальные регуляторы ремоделирования. Простагландины (ПГ). В настоя­щее время установлено, что в регуляции метаболических процессов костной ткани принимают участие и факторы микроокружения, в частности, ПГ. Клетки костной ткани продуцируют простаноиды, из которых наиболее изу­чены ПГЕ 2 . ПГ модулируют различные процессы, включая воспаление, кро­вообращение и ионный транспорт через клеточные мембраны. Экзогенные ПГЕ 2 стимулируют биосинтез коллагена, пролиферацию и цитодифференцировку клеток периоста, что приводит к утолщению кости за счет развития периостальных напластований. При этом в самой костной ткани при экзо­генном воздействии ПГЕ 2 происходит стимуляция процессов резорбции, что сопровождается выделением из кости кальция и магния. Возможно, ПГ регулируют дифференцировку остеобластов и выступают как агенты локаль­ного контроля за остеокластической резорбцией кости. ПГ, подобно паратгормону, повышают уровень цАМФ, индуцируя остеобласты к стимуляции активности остеокластов. В экспериментальных условиях доказана связь между продукцией ПГ макрофагами и фактором, активирующим остеоклас­ты, который продуцируется лимфоцитами. Этот механизм может иметь мес­то при резорбции кости вследствие хронического воспалительного процесса или при предопухолевом состоянии.

Инсулиноподобные факторы роста существуют в двух формах (IGF-1, IGF-2). IGF-1 стимулирует биосинтез и ингибирует деградацию коллагена и других компонентов матрикса, стимулирует пролиферацию остеобластов.

Трансформирующий фактор роста-β. Имеется 5 разновидностей данно­го фактора. Их биологические эффекты связаны с регуляцией пролиферативной активности остеобластов. Они стимулируют биосинтез коллагена I типа, остеопонтина, секрецию цитокинов, щелочной фосфатазы, продук­цию ПГЕ 2 и ингибируют выработку остеокальцина.

Факторы роста фибробластов обнаруживаются в костях. Они стимулиру­ют в костных клетках биосинтез коллагена I типа.

Тромбоцитарный фактор роста регулирует костную резорбцию и репли­кацию костных клеток.

На синтез ДНК и коллагена в остеобластах выраженное действие оказы­вает интерлейкин-1. Остеобластическая резорбция кости, опосредованная паратгормоном, может стимулироваться остеокальцином.

К местным факторам, стимулирующим резорбцию кости, относят и по­вышенное напряжение кислорода, натяжение и сдавливание кости, как факторы, модифицирующие активность клеток. Известно, что в кости при приложении к ней внешних сил или сдавливании, возникает «пьезоэлектри­ческий эффект», а на границе твердого вещества с жидкостью - «электро­кинетический феномен». Механизмы резорбции костной ткани и вклад биоэлектрических потенциалов в этот процесс нуждаются в дальнейшей уточнении, хотя метод электростимуляции положительно зарекомендовал себя при лечении переломов кости.

Кость представляет собой сложную материю, это сложный анизотропный неравномерный жизненный материал, обладающий упругими и вязкими свойствами, а также хорошей адаптивной функцией. Все превосходные свойства костей составляют неразрывное единство с их функциями.

Функции костей главным образом имеет две стороны: одна из них – это образование скелетной системы, используемой для поддержания тела человека и сохранения его нормальной формы, а также для защиты его внутренних органов. Скелет является частью тела, к которой крепятся мышцы и которая обеспечивает условия для их сокращения и движения тела. Скелет сам по себе выполняет адаптивную функцию путем последовательного изменения своей формы и структуры. Вторая сторона функции костей состоит в том, чтобы путем регулирования концентрации Ca 2+ , H + , HPO 4 + в электролите крови поддерживать баланс минеральных веществ в теле человека, то есть функцию кроветворения, а также сохранения и обмена кальция и фосфора.

Форма и структура костей являются различными в зависимости от выполняемых ими функций. Разные части одной и той же кости вследствие своих функциональных различий имеют разную форму и структуру, например, диафиз бедренной кости и головка бедренной кости. Поэтому полное описание свойств, структуры и функций костного материала является важной и сложной задачей.

Структура костной ткани

«Ткань» представляет собой комбинированное образование, состоящее из особых однородных клеток и выполняющих определенную функцию. В костных тканях содержатся три компонента: клетки, волокна и костный матрикс. Ниже представлены характеристики каждого из них:

Клетки: В костных тканях существуют три вида клеток, это остеоциты, остеобласт и остеокласт. Эти три вида клеток взаимно превращаются и взаимно сочетаются друг с другом, поглощая старые кости и порождая новые кости.

Костные клетки находятся внутри костного матрикса, это основные клетки костей в нормальном состоянии, они имеют форму сплющенного эллипсоида. В костных тканях они обеспечивают обмен веществ для поддержания нормального состояния костей, а в особых условиях они могут превращаться в два других вида клеток.

Остеобласт имеет форму куба или карликового столбика, они представляют собой маленькие клеточные выступы, расположенные в довольно правильном порядке и имеют большое и круглое клеточное ядро. Они расположены в одном конце тела клетки, протоплазма имеет щелочные свойства, они могут образовывать межклеточное вещество из волокон и мукополисахаридных белков, а также из щелочной цитоплазмы. Это приводит к осаждению солей кальция в идее игловидных кристаллов, расположенных среди межклеточного вещества, которое затем окружается клетками остеобласта и постепенно превращается в остеобласт.

Остеокласт представляет собой многоядерные гигантские клетки, диаметр может достигать 30 – 100 µm, они чаще всего расположены на поверхности абсорбируемой костной ткани. Их цитоплазма имеет кислотный характер, внутри ее содержится кислотная фосфотаза, способная растворять костные неорганические соли и органические вещества, перенося или выбрасывая их в другие места, тем самым ослабляя или убирая костные ткани в данном месте.

Костный матрикс также называется межклеточным веществом, он содержит неорганические соли и органические вещества. Неорганические соли также называются неорганическими составными частями костей, их главным компонентом являются кристаллы гидроксильного апатита длиной около 20-40 nm и шириной около 3-6 nm. Они главным образом состоят из кальция, фосфорнокислых радикалов и гидроксильных групп, образующих , на поверхности которых находятся ионы Na + , K + , Mg 2+ и др. Неорганические соли составляют примерно65% от всего костного матрикса. Органические вещества в основном представлены мукополисахаридными белками, образующими коллагеновое волокно в кости. Кристаллы гидроксильного апатита располагаются рядами вдоль оси коллагеновых волокон. Коллагеновые волокна расположены неодинаково, в зависимости от неоднородного характера кости. В переплетающихся ретикулярных волокнах костей коллагеновые волокна связаны вместе, а в костях других типов они обычно расположены стройными рядами. Гидроксильный апатит соединяется вместе с коллагеновыми волокнами, что придает кости высокую прочность на сжатие.

Костные волокна в основном состоит из коллагенового волокна, поэтому оно называется костным коллагеновым волокном, пучки которого расположены послойно правильными рядами. Это волокно плотно соединено с неорганическими составными частями кости, образуя доскообразную структуру, поэтому оно называется костной пластинкой или ламеллярной костью. В одной и той же костной пластинке большая часть волокон расположена параллельно друг другу, а слои волокон в двух соседних пластинках переплетаются в одном направлении, и костные клетки зажаты между пластинками. Вследствие того, что костные пластинки расположены в разных направлениях, то костное вещество обладает довольно высокой прочностью и пластичностью, оно способно рационально воспринимать сжатие со всех направлений.

У взрослых людей костная ткань почти вся представлена в виде ламеллярной кости, и в зависимости от формы расположения костных пластинок и их пространственной структуры эта ткань подразделяется на плотную кость и губчатую кость. Плотная кость располагается на поверхностном слое ненормальной плоской кости и на диафизе длинной кости. Ее костное вещество плотное и прочное, а костные пластинки расположены в довольно правильном порядке и тесно соединены друг с другом, оставляя лишь небольшое пространство в некоторых местах для кровеносных сосудов и нервных каналов. Губчатая кость располагается в глубинной ее части, где пересекается множество трабекул, образуя сетку в виде пчелиных сот с разной величиной отверстий. Отверстия сот заполнены костным мозгом, кровеносными сосудами и нервами, а расположение трабекул совпадает с направлением силовых линий, поэтому хотя кость и рыхлая, но она в состоянии выдерживать довольно большую нагрузку. Кроме того, губчатая кость имеет огромную поверхностную площадь, поэтому она также называется Костю, имеющей форму морской губки. В качестве примера можно привести таз человека, средний объем которого составляет 40 см 3 , а поверхность плотной кости в среднем составляет 80 см 2 , тогда как поверхностная площадь губчатой кости достигает 1600 см 2 .

Морфология кости

С точки зрения морфологии, размеры костей неодинаковы, их можно подразделить на длинные, короткие, плоские кости и кости неправильной формы. Длинные кости имеют форму трубки, средняя часть которых представляет собой диафиз, а оба конца – эпифиз. Эпифиз сравнительно толстый, имеет суставную поверхность, образованную вместе с соседними костями. Длинные кости главным образом располагаются на конечностях. Короткие кости имеют почти кубическую форму, чаще всего находятся в частях тела, испытывающих довольно значительное давление, и в то же время они должны быть подвижными, например, это кости запястья рук и кости предплюсны ног. Плоские кости имеют форму пластинок, они образуют стенки костных полостей и выполняют защитную роль для органов, находящихся внутри этих полостей, например, как кости черепа.

Кость состоит из костного вещества, костного мозга и надкостницы, а также имеет разветвленную сеть кровеносных сосудов и нервов, как показано на рисунке. Длинная бедренная кость состоит из диафиза и двух выпуклых эпифизарных концов. Поверхность каждого эпифизарного конца покрыта хрящом и образует гладкую суставную поверхность. Коэффициент трения в пространстве между хрящами в месте соединения сустава очень мал, он может быть ниже 0.0026. Это самый низкий известный показатель силы трения между твердыми телами, что позволяет хрящу и соседним костным тканям создать высокоэффективный сустав. Эпифизарная пластинка образована из кальцинированного хряща, соединенного с хрящом. Диафиз представляет собой полую кость, стенки которой образованы из плотной кости, которая является довольно толстой по всей ее длине и постепенно утончающейся к краям.

Костный мозг заполняет костномозговую полость и губчатую кость. У плода и у детей в костномозговой полости находится красный костный мозг, это важный орган кроветворения в человеческом организме. В зрелом возрасте мозг в костномозговой полости постепенно замещается жирами и образуется желтый костный мозг, который утрачивает способность к кроветворению, но в костном мозге по-прежнему имеется красный костный мозг, выполняющий эту функцию.

Надкостница представляет собой уплотненную соединительную ткань, тесно прилегающую к поверхности кости. Она содержит кровеносные сосуды и нервы, выполняющие питательную функцию. Внутри надкостницы находится большое количество остеобласта, обладающего высокой активностью, который в период роста и развития человека способен создавать кость и постепенно делать ее толще. Когда кость повреждается, остеобласт, находящийся в состоянии покоя внутри надкостницы, начинает активизироваться и превращается в костные клетки, что имеет важное значение для регенерации и восстановления кости.

Микроструктура кости

Костное вещество в диафизе большей частью представляет собой плотную кость, и лишь возле костномозговой полости имеется небольшое количество губчатой кости. В зависимости от расположения костных пластинок, плотная кость делится на три зоны, как показано на рисунке: кольцевидные пластинки, гаверсовы (Haversion) костные пластинки и межкостные пластинки.

Кольцевидные пластинки представляют собой пластинки, расположенные по окружности на внутренней и внешней стороне диафиза, и они подразделяются на внешние и внутренние кольцевидные пластинки. Внешние кольцевидные пластинки имеют от нескольких до более десятка слоев, они располагаются стройными рядами на внешней стороне диафиза, их поверхность покрыта надкостницей. Мелкие кровеносные сосуды в надкостнице пронизывают внешние кольцевидные пластинки и проникают вглубь костного вещества. Каналы для кровеносных сосудов, проходящие через внешние кольцевидные пластинки, называются фолькмановскими каналами (Volkmann’s Canal). Внутренние кольцевидные пластинки располагаются на поверхности костномозговой полости диафиза, они имеют небольшое количество слоев. Внутренние кольцевидные пластинки покрыты внутренней надкостницей, и через эти пластинки также проходят фолькмановские каналы, соединяющие мелкие кровеносные сосуды с сосудами костного мозга. Костные пластинки, концентрично расположенные между внутренними и внешними кольцевидными пластинками, называются гаверсовыми пластинками. Они имеют от нескольких до более десятка слоев, расположенных параллельно оси кости. В гаверсовых пластинках имеется один продольный маленький канал, называемый гаверсовым каналом, в котором находятся кровеносные сосуды, а также нервы и небольшое количество рыхлой соединительной ткани. Гаверсовы пластинки и гаверсовы каналы образуют гаверсову систему. Вследствие того, что в диафизе имеется большое число гаверсовых систем, эти системы называются остеонами (Osteon). Остеоны имеют цилиндрическую форму, их поверхность покрыта слоем цементина, в котором содержится большое количество неорганических составных частей кости, костного коллагенового волокна и крайне незначительное количество костного матрикса.

Межкостные пластинки представляют собой пластинки неправильной формы, расположенные между остеонами, в них нет гаверсовых каналов и кровеносных сосудов, они состоят из остаточных гаверсовых пластинок.

Внутрикостное кровообращение

В кости имеется система кровообращения, например, на рисунке показа модель кровообращения в плотной длинной кости. В диафизе есть главная питающая артерия и вены. В надкостнице нижней части кости имеется маленькое отверстие, через которое внутрь кости проходит питающая артерия. В костном мозге эта артерия разделяется на верхнюю и нижнюю ветви, каждая из которых в дальнейшем расходится на множество ответвлений, образующих на конечном участке капилляры, питающие ткани мозга и снабжающие питательными веществами плотную кость.

Кровеносные сосуды в конечной части эпифиза соединяются с питающей артерией, входящей в костномозговую полость эпифиза. Кровь в сосудах надкостницы поступает из нее наружу, средняя часть эпифиза в основном снабжается кровью из питающей артерии и лишь небольшое количество крови поступает в эпифиз из сосудов надкостницы. Если питающая артерия повреждается или перерезается при операции, то, возможно, что снабжение кровью эпифиза будет заменяться на питание из надкостницы, поскольку эти кровеносные сосуды взаимно связываются друг с другом при развитии плода.

Кровеносные сосуды в эпифизе проходят в него из боковых частей эпифизарной пластинки, развиваясь, превращаются в эпифизарные артерии, снабжающие кровью мозг эпифиза. Есть также большое количество ответвлений, снабжающих кровью хрящи вокруг эпифиза и его боковые части.

Верхняя часть кости представляет собой суставный хрящ, под которым находится эпифизарная артерия, а еще ниже ростовой хрящ, после чего имеются три вида кости: внутрихрящевая кость, костные пластинки и надкостница. Направление кровотока в этих трех видах кости неодинаково: во внутрихрящевой кости движение крови происходит вверх и наружу, в средней части диафиза сосуды имеют поперечное направление, а в нижней части диафиза сосуды направлены вниз и наружу. Поэтому кровеносные сосуды во всей плотной кости расположены в форме зонтика и расходятся лучеобразно.

Поскольку кровеносные сосуды в кости очень тонкие, и их невозможно наблюдать непосредственно, поэтому изучение динамики кровотока в них довольно затруднительно. В настоящее время с помощью радиоизотопов, внедряемых в кровеносные сосуды кости, судя по количеству их остатков и количеству выделяемого ими тепла в сопоставлении с пропорцией кровотока, можно измерить распределение температур в кости, чтобы определить состояние кровообращения.

В процессе лечения дегенеративно-дистрофических заболеваний суставов безоперационным методом в головке бедренной кости создается внутренняя электрохимическая среда, которая способствует восстановлению нарушенной микроциркуляции и активному удалению продуктов обмена разрушенных заболеванием тканей, стимулирует деление и дифференциацию костных клеток, постепенно замещающих дефект кости.

В состав скелета любого взрослого человека входит 206 различных костей, все они различны по строению и роли. На первый взгляд они кажутся твердыми, негибкими и безжизненными. Но это ошибочное впечатление, в них непрерывно происходят различные обменные процессы, разрушение и регенерация. Они, в совокупности с мышцами и связками, образуют особую систему, что носит название "костно-мышечная ткань", основная функция которой - опорно-двигательная. Она образована из нескольких видов особых клеток, которые различаются по структуре, функциональным особенностям и значению. О костных клетках, их строение и функциях далее и пойдет речь.

Строение костной ткани

Особенности пластинчатой костной ткани

Она образована костными пластинками, имеющими толщину 4-15 мкм. Они, в свою очередь, состоят их трех компонентов: остеоцитов, основного вещества и коллагеновых тонких волокон. Из этой ткани образованы все кости взрослого человека. Волокна коллагена первого типа лежат параллельно относительно друг друга и ориентированы в определенном направлении, у соседних же костных пластинок они направлены в противоположную сторону и перекрещиваются практически под прямым углом. Между ними находятся тела остеоцитов в лакунах. Такое строение костной ткани обеспечивает ей наибольшую прочность.

Губчатое вещество кости

Встречается также название "трабекулярное вещество". Если проводить аналогию, то структура сравнима с обычной губкой, построенной из костных пластинок с ячейками между ними. Расположены они упорядоченно, в соответствии с распределенной функциональной нагрузкой. Из губчатого вещества в основном построены эпифизы длинных костей, часть смешанных и плоских и все короткие. Видно, что в основном это легкие и в то же время прочные части скелета человека, которые испытывают нагрузку в различных направлениях. Функции костной ткани находятся в прямой взаимосвязи с ее строением, которое в данном случае обеспечивает большую площадь для метаболических процессов, осуществляемых на ней, придает высокую прочность в совокупности с небольшой массой.

Плотное (компактное) вещество кости: что это?

Из компактного вещества состоят диафизы трубчатых костей, кроме того, оно тонкой пластинкой покрывает их эпифизы снаружи. Его пронизывают узкие каналы, через них проходят нервные волокна и кровеносные сосуды. Некоторые из них располагаются параллельно костной поверхности (центральные или гаверсовы). Другие выходят на поверхность кости (питательные отверстия), через них внутрь проникают артерии и нервы, а наружу - вены. Центральный канал, в совокупности с окружающими его костными пластинками, образует так называемую гаверсову систему (остеон). Это основное содержимое компактного вещества и их рассматривают как его морфофункциональную единицу.

Остеон - структурная единица костной ткани

Второе его название - гаверсова система. Это совокупность костных пластинок, имеющих вид цилиндров вставленных друг в друга, пространство между ними заполняют остеоциты. В центре располагается гаверсов канал, через него проходят обеспечивающие обмен веществ в костных клетках кровеносные сосуды. Между соседними структурными единицами есть вставочные (интерстициальные) пластинки. По сути, они являются остатками остеонов, существовавших ранее и разрушившихся в тот момент, когда костная ткань претерпевала перестройку. Также существуют еще генеральные и окружающие пластинки, они образуют самый внутренний и наружный слой компактного вещества кости соответственно.

Надкостница: строение и значение

Исходя из названия, можно определить, что она покрывает кости снаружи. Прикрепляется она к ним с помощью коллагеновых волокон, собранных в толстые пучки, которые проникают и сплетаются с наружным слоем костных пластинок. Имеет два выраженных слоя:

  • наружный (его образует плотная волокнистая, неоформленная соединительная ткань, в ней преобладают волокна, располагающиеся параллельно к поверхности кости);
  • внутренний слой хорошо выражен у детей и менее заметен у взрослых (образован рыхлой волокнистой соединительной тканью, в которой есть веретенообразные плоские клетки - неактивные остеобласты и их предшественники).

Надкостница выполняет несколько важных функций. Во-первых, трофическую, то есть обеспечивает кость питанием, поскольку на поверхности содержит сосуды, которые проникают внутрь вместе с нервами через специальные питательные отверстия. Эти каналы питают костный мозг. Во-вторых, регенераторную. Она объясняется наличием остеогенных клеток, которые при стимуляции трансформируются в активные остеобласты, вырабатывающие матрикс и вызывающие наращивание костной ткани, обеспечивающие ее регенерацию. В-третьих, механическую или опорную функцию. То есть обеспечение механической связи кости с другими прикрепляющимися к ней структурами (сухожилиями, мышцами и связками).

Функции костной ткани

Среди основных функций можно перечислить следующие:

  1. Двигательная, опорная (биомеханическая).
  2. Защитная. Кости оберегают от повреждений головной мозг, сосуды и нервы, внутренние органы и т. д.
  3. Кроветворная: в костном мозге происходит гемо - и лимфопоэз.
  4. Метаболическая функция (участие в обмене веществ).
  5. Репараторная и регенераторная, заключающиеся в восстановлении и регенерации костной ткани.
  6. Морфобразующая роль.
  7. Костная ткань - это своеобразное депо минеральных веществ и ростовых факторов.