Электронный переключатель с фиксацией схема. Электронный выключатель

Примеры построения

Коридорный выключатель очень хорошо знаком электрикам старшего поколения. Сейчас подобное устройство несколько забыто, поэтому придется вкратце рассказать об алгоритме его действия.

Представьте, что Вы выходите из комнаты в коридор, в котором нет окон. Около двери щелкаете выключателем, и в коридоре загорается свет. Этот выключатель условно назовем первым.

Дойдя до противоположного конца коридора, перед выходом на улицу Вы гасите свет вторым выключателем, расположенным около выходной двери. Если в комнате еще кто-то остался, то он также может при выходе включить свет первым выключателем, и с помощью второго выключить. При заходе в коридор с улицы свет включается вторым выключателем, а уже в комнате выключается первым.

Хотя все устройство в целом называется выключателем, для его изготовления потребуются два переключателя с перекидным контактом. Обычные выключатели здесь не подойдут. Схема такого коридорного выключателя показана на рисунке 1.

Рисунок 1. Коридорный выключатель с двумя переключателями.

Как видно из рисунка схема достаточно проста. Лампочка будет светить в том случае, если оба переключателя S1 и S2 замкнуты на один и тот же провод, или верхний, или нижний, как показано на схеме. В противном случае лампа погашена.

Для управления одним источником света из трех мест, не обязательно одной лампочкой, это может быть несколько светильников под потолком, схема уже другая. Она показана на рисунке 2.

Рисунок 2. Коридорный выключатель с тремя переключателями.

По сравнению с первой схемой, эта схема несколько сложнее. В ней появился новый элемент - переключатель S3, который содержит две группы переключающих контактов. В положении контактов, указанном на схеме, лампа включена, хотя обычно указывается положение, при котором потребитель выключен. Но при таком начертании, легче проследить путь тока через выключатели. Если теперь любой из них перевести в положение противоположное указанному на схеме, то лампа выключится.

Чтобы проследить путь тока при других вариантах положения переключателей, достаточно просто поводить по схеме пальцем и мысленно перевести их во все возможные положения.

Обычно такой способ позволяет разобраться и с более сложными схемами. Поэтому длинного и скучного описания работы схемы здесь не приводится.

Такая схема позволяет управлять освещением из трех мест. Она может найти применение в коридоре, в который выходят две двери. Конечно, можно возразить, что в этом случае проще поставить современный датчик движения, который даже следит за тем, день сейчас или ночь. Поэтому днем освещение включаться не будет. Но в некоторых случаях такая автоматика просто не поможет.

Представьте себе, что такой тройной выключатель установлен в комнате. Одна клавиша расположена у входной двери, другая над письменным столом, а третья около кровати. Ведь автоматика может включить свет, когда вы просто во сне перевернетесь с боку на бок. Можно найти еще немало условий, где необходима именно схема без автоматики. Такие выключатели называют также проходными , а не только коридорными.

Теоретически такой проходной выключатель можно сделать и с большим количеством переключателей, но это значительно усложнит схему, потребуются переключатели все с большим количеством контактных групп. Уже даже всего пять переключателей сделают схему неудобной для монтажа и просто понимания принципов ее работы.

А если такой выключатель потребуется для коридора, в который выходит десять, а то и двадцать комнат? Ситуация достаточно реальная. Таких коридоров достаточно в провинциальных гостиницах, студенческих и заводских общежитиях. Как же быть в этом случае?

Вот тут на помощь придет электроника. Ведь как работает такой проходной выключатель? На одну клавишу нажали - свет включился, и горит до тех пор, пока не нажали на другую. Такой алгоритм работы напоминает работу электронного устройства - триггера. Более подробно о различных триггерах можно почитать в цикле статей « ».

Если просто стоять и нажимать на одну и ту же клавишу, то лампочка будет поочередно включаться и гаснуть. Такой режим похож на работу триггера в счетном режиме - с приходом каждого управляющего импульса состояние триггера меняется на противоположное.

При этом в первую очередь следует обратить внимание на то, что при использовании триггера клавиши не должны иметь фиксации: достаточно просто кнопок, наподобие звонковых. Для подсоединения такой кнопки потребуется всего два провода, причем не очень даже и толстых.

А если параллельно одной кнопке подключить еще одну, то получится проходной выключатель с двумя кнопками. Ничего не меняя в принципиальной схеме, можно подключить пять, десять и более кнопок. Схема с использованием триггера К561ТМ2 показана на рисунке 3.

Рисунок 3. Проходной выключатель на триггере К561ТМ2.

Триггер включен в счетном режиме. Для этого его инверсный выход подключен к входу D. Это стандартное включение, при котором каждый входной импульс по входу C изменяет состояние триггера на противоположное.

Входные импульсы получаются при нажатии кнопок S1…Sn. Цепочка R2C2 предназначена подавления дребезга контактов, и формирования одиночного импульса. При нажатии на кнопку происходит заряд конденсатора C2. При отпускании кнопки конденсатор разряжается через C - вход триггера, формируя входной импульс. Таким образом обеспечивается четкая работа всего переключателя в целом.

Цепочка R1C1, подключенная к входу R триггера обеспечивает сброс при начальном включении питания. Если этого сброса не требуется, то R - вход следует просто подключить к общему проводу питания. Если его оставить просто «в воздухе», то триггер воспримет это как высокий уровень и будет все время находиться в нулевом состоянии. Поскольку RS - входы триггера являются приоритетными, подача импульсов на вход C состояния триггера менять не сможет, вся схема окажется заторможенной, неработоспособной.

К прямому выходу триггера подключается выходной каскад, управляющий нагрузкой. Самый простой и надежный вариант это реле и транзистор, как показано на схеме. Параллельно катушке реле подключен диод D1, назначение которого уберечь выходной транзистор от напряжения самоиндукции при выключении реле Rel1.

Микросхема К561ТМ2 в одном корпусе содержит два триггера, один из которых не используется. Поэтому входные контакты незадействованного триггера следует соединить с общим проводом. Это контакты 8, 9, 10 и 11. Такое подключение предотвратит выход микросхемы из строя под воздействием статического электричества. Для микросхем структуры КМОП такое соединение всегда обязательно. Питающее напряжение +12В следует подать на 14 вывод микросхемы, а 7 вывод соединить с общим проводом питания.

В качестве транзистора VT1 можно применить КТ815Г, диод D1 типа 1N4007. Реле малогабаритное с катушкой на 12В. Рабочий ток контактов выбирается в зависимости от мощности светильника, хотя может быть и любая другая нагрузка. Здесь лучше всего использовать импортные реле типа TIANBO или им подобные.

Источник питания показан на рисунке 4.

Рисунок 4. Источник питания.

Источник питания выполнен по трансформаторной схеме с использованием интегрального стабилизатора 7812, обеспечивающего на выходе постоянное напряжение 12В. В качестве сетевого трансформатора используется трансформатор мощностью не более 5…10 Вт с напряжением вторичной обмотки 14…17В. Диодный мост Br1 можно применить типа КЦ407, либо собрать из диодов 1N4007, которые в настоящее время очень распространены.

Электролитические конденсаторы импортные типа JAMICON или подобные. Их теперь также проще купить, чем детали отечественного производства. Хотя стабилизатор 7812 имеет встроенную защиту от коротких замыканий, но все равно перед включением устройства следует убедиться в правильности монтажа. Это правило забывать не следует никогда.

Источник питания, выполненный по указанной схеме, обеспечивает гальваническую развязку от осветительной сети, что позволяет применять данное устройство в сырых помещениях, таких как погреба и подвалы. Если такого требования не предъявляется, то источник питания можно собрать по бестрансформаторной схеме, подобно той, которая показана на рисунке 5.

Рисунок 5. Бестрансформаторный источник питания.

Такая схема позволяет отказаться от использования трансформатора, что в ряде случаев достаточно удобно и практично. Правда кнопки, да и вся конструкция в целом, будут иметь гальваническую связь с осветительной сетью. Об этом не следует забывать, и соблюдать правила техники безопасности.

Выпрямленное сетевое напряжение через балластный резистор R3 подается на стабилитрон VD1 и ограничивается на уровне 12В. Пульсации напряжения сглаживаются электролитическим конденсатором C1. Нагрузка включается транзистором VT1. При этом резистор R4 подключается к прямому выходу триггера (вывод 1), как показано на рисунке 3.

Собранная из исправных деталей схема не требует налаживания, начинает работать сразу.

Схемы электронных виключателей питания. Выключатель электронный схема

ЭЛЕКТРОННЫЙ ВЫКЛЮЧАТЕЛЬ

Схема электронного выключателя основана на микросхеме CD4013, и имеет два устойчивых состояния, ON и OFF. Когда он включен, то и остается включенным, пока вы не нажмёте кнопку выключателя еще раз. Короткое нажатие кнопки SW1, переключает его в другое состояние. Устройство будет полезно для исключения громоздких и ненадёжных клавишных переключателей либо для дистанционного управления разными электроприборами.

Электронное реле - схема принципиальная

Контакты реле могут выдерживать высокое сетевое напряжения переменного тока, а также достаточный постоянный ток, что делает проект подходящим для таких приборов, как вентилятор, свет, телевизор, насос, электродвигатель постоянного тока, да и вообще любой электронный проект требует подобный электронный переключатель. Устройство работает от сети переменного тока напряжением до 250 В и коммутирует нагрузку до 5 A.


Параметры и элементы схемы

  • Питание: 12 вольт
  • D1: индикатор подачи питания
  • D3: индикатор включения реле
  • CN1: вход питания
  • SW1: выключатель

Транзистор Q1 можно заменить на любой похожей структуры с предельным током минимум 100 мА, например КТ815. Реле можно взять автомобильное, или любое другое на 12 В. Если электронный выключатель требуется собрать в виде отдельной малогабаритной коробочки, имеет смысл питание схемы осуществить от маленького импульсного блока питания, типа зарядки мобильного. Поднять напряжение с 5 до 12 В можно заменой стабилитрона на плате. При необходимости вместо реле ставим мощный полевой транзистор, как это реализовано в таком переключателе.

el-shema.ru

Электронный выключатель | all-he

Схема электронного выключателя была задумана для дистанционного управления нагрузками на расстоянии. Полное устройство аппарата рассмотрим в другой раз, а в этой статье обсудим простую схему электронного выключателя на основе всеми любимого таймера 555.

Схема состоит из самого таймера, кнопки без фиксации транзистора в качестве усилителя и электромагнитного реле. В моем случае было использовано реле на 220 Вольт с током 10Ампер, такие можно найти в источниках бесперебойного питания.

В качестве силового транзистора можно использовать буквально любые транзисторы средней и большой мощности. В схеме использован биполярный транзистор обратной проводимости (NPN), я же использовал прямой транзистор (PNP), поэтому нужно будет менять полярность подключения транзистора, то есть - если собираетесь применить транзистор прямой проводимости, то плюс питания подается на эмиттер транзистора, при использовании транзисторов обратной проводимости на эмиттер подается минус питания.

Из прямых, можно применить транзисторы серии КТ818, КТ837, КТ816, КТ814 или аналогичные, из обратных - КТ819, КТ805, КТ817, КТ815 и так далее.

Электронный выключатель работает в широком диапазоне питающих напряжений, лично подавал от 6 до 16 Вольт, все работает четко.

Схема активируется при кратковременном нажатии кнопки, в этот момент транзистор моментально открывается включая реле, последнее замыкаясь подключает нагрузку. Выключение нагрузки случается только при повторном нажатии. Таким образом, схема играет роль выключателя с фиксацией, но в отличие от последнего, работает исключительно на электронной основе.

В моем случае вместо кнопки использована оптопара, а замыкается схема при команде с пульта управления. Дело в том, что сигнал на оптопару поступает от радиомодуля, который был взят от китайской машинки на радиоуправлении. Такая система позволяет управлять несколькими нагрузками на расстоянии без особого труда.

Данная схема электронного выключателя всегда показывает хорошие рабочие параметры и работает безотказно - пробуйте и сами убедитесь.

all-he.ru

Выключатели на транзисторах - Меандр - занимательная электроника

Основное назначение транзисторных выключателей, схемы которых предлагаются вниманию читателей, - включение и выключение нагрузки постоянного тока. Кроме этого, он может выполнять ещё дополнительные функции, например, индициро­вать своё состояние, автоматически отключать нагрузку при раз­рядке аккумуляторной батареи до предельно допустимого значения или по сигналу датчиков температуры, освещённости и др. На базе нескольких выключателей можно сделать пере­ключатель. Коммутация тока осуществляется транзистором, а управление осуществляется одной простой кнопкой с контактом на замыкание. Каждое нажатие на кнопку изменяет состояние выключателя на противоположное.

Описание аналогичного выключате­ля было приведено в , нотам для управления применены две кнопки. К достоинствам предлагаемых выключа­телей можно отнести бесконтактное подключение нагрузки, практически отсутствие потребляемого тока в вы­ключенном состоянии, доступные эле­менты и возможность применения ма­логабаритной кнопки, занимающей ма­ло места на панели прибора. Недостат­ки - собственный потребляемый ток (несколько миллиампер) во включён­ном состоянии, падение напряжения на транзисторе (доли вольта), необходи­мость принятия мер для защиты от импульсных помех надёжного контакта во входной цепи (может самопроиз­вольно выключаться при кратковремен­ном нарушении контакта).

Схема выключателя показана на рис. 1. Принцип его работы основан на том, что у открытого кремниевого тран­зистора напряжение на переходе база- эмиттер транзистора - 0,5…0,7 В, а на­пряжение насыщения коллектор-эмит­тер может быть 0,2...0,3 В. По сути, это устройство представляет собой триггер на транзисторах с разной структурой, управляемый одной кнопкой. После по­дачи питающего напряжения оба тран­зистора закрыты, а конденсатор С1 раз­ряжен. При нажатии на кнопку SB1 ток зарядки конденсатора С1 открывает транзистор VT1, и следом за ним откро­ется транзистор VT2. При отпускании кнопки транзисторы остаются во включённом состоянии, питающее напряже­ние (за вычетом падения напряжения на транзисторе ѴТ1) поступает на нагрузку и продолжится зарядка конденсатора С1. Он зарядится до напряжения, немно­гим большем, чем напряжение на базе этого транзистора, поскольку напряже­ние насыщения коллектор-эмиттер меньше напряжения база-эмиттер.

Поэтому при следующем нажатии на кнопку напряжение база-эмиттер на транзисторе ѴТ1 будет недостаточным для поддержания его в открытом со­стоянии и он закроется. Следом закроется транзистор VT2, и нагрузка обесточится. Конденсатор С1 разрядит­ся через нагрузку и резисторы R3-R5, и выключатель вернётся в исходное со­стояние. Максимальный коллекторный ток транзистора ѴТ1 Iк зависит от коэф­фициента передачи тока h31э и базового тока Іб: Iк = lб h3lэ. Для указанных на схеме номиналов и типов элементов этот ток - 100...150 мА. Чтобы выключатель рабо­тал нормально, ток, потребляемый на­грузкой, должен быть меньше этого зна­чения.

У этого выключателя есть две осо­бенности. Если на выходе выключателя будет короткое замыкание, после крат­ковременного нажатия на кнопку SB1 транзисторы на короткое время откро­ются и затем, после зарядки конденса­тора С1, закроются. При уменьшении выходного напряжения примерно до 1 В (зависит от сопротивлений резисторов R3 и R4) транзисторы также закроются, т. е. нагрузка будет обесточена.

Второе свойство выключателя можно использовать для построения разрядно­го устройства для отдельных Ni-Cd или Ni-Mh аккумуляторов до 1 В перед составлением их в батарею и дальней­шей общей зарядке. Схема устройства показана на рис. 2. Выключатель на транзисторах ѴТ1, ѴТ2 подключает к аккумулятору разрядный резистор R6, параллельно которому подключён пре­образователь напряжения , собран­ный на транзисторах ѴТЗ, ѴТ4, питающий светодиод HL1. Светодиод индицирует состояние процесса разрядки и являет­ся дополнительной нагрузкой аккумуля­тора. Резистором R8 можно изменять яркость свечения светодиода, вслед­ствие этого изменяется потребляемый им ток. Так можно производить коррек­тировку разрядного тока. По мере раз­рядки аккумулятора снижается напряже­ние на входе выключателя, а также на базе транзистора ѴТ2. Резисторы дели­теля в цепи базы этого транзистора по­добраны так, что при напряжении на вхо­де 1 В напряжение на базе уменьшится настолько, что транзистор ѴТ2 закроет­ся, а вслед за ним и транзистор ѴТ1 - разрядка прекратится. При указанных на схеме номиналах элементов интервал регулировки тока разрядки - 40...90 мА. Если резистор R6 исключить, разрядный ток можно менять в интервале от 10 до 50 мА. При использовании сверхъяркого светодиода это устройство можно при­менить для построения карманного фо­наря с защитой аккумулятора от глубо­кой разрядки.


На рис. 3 показано ещё одно приме­нение выключателя - таймер. Он был использован мною в портативном прибо­ре - испытателе оксидных конденсато­ров. В схему дополнительно введён све­тодиод HL1, который индицирует состоя­ние устройства. После включения заго­рается светодиод и конденсатор С2 на­чинает заряжаться обратным током дио­да VD1. При определённом напряжении на нём откроется транзистор ѴТ3, кото­рый закоротит эмиттерный переход транзистора ѴТ2, что приведёт к выклю­чению устройства (светодиод погаснет). Конденсатор С2 быстро разрядится че­рез диод VD1, резисторы R3, R4 и выклю­чатель вернётся в исходное состояние. Время выдержки зависит от ёмкости кон­денсатора С2 и обратного тока диода. При указанных на схеме элементах оно составляет около 2 мин. Если взамен конденсатора С2 установить фоторезис­тор, терморезистор (или другие датчи­ки), а взамен диода - резистор, получим устройство, которое будет выключаться при изменении освещённости, темпера­туры и т. п.

Если в нагрузке есть конденсаторы большой ёмкости, выключатель может не включиться (это зависит от их ёмкос­ти). Схема устройства, лишённого этого недостатка, показана на рис. 4. Добав­лен ещё один транзистор ѴТ1, который выполняет функцию ключа, а два других транзистора управляют этим ключом, чем исключается влияние нагрузки на работу выключателя. Но при этом поте­ряется свойство не включаться при наличии в цепи нагрузки короткого замыкания. Светодиод выполняет аналогичную функцию. При указан­ных на схеме номиналах деталей ток базы транзистора ѴТ1 - около 3 мА. Были опробованы несколько тран­зисторов КТ209К и КТ209В в качест­ве ключа. Они имели коэффициенты передачи тока базы от 140 до 170. При токе нагрузки 120 мА падение напряжения на транзисторах было 120…200 мВ. При токе 160 мА - 0,5…2,2 В. Использование в качест­ве ключа составного транзистора КТ973Б позволило значительно уве­личить допустимый ток нагрузки, но падение напряжения на нём было 750...850 мВ, и при токе 300 мА транзистор слабо грелся. В выключен­ном состоянии потребляемый ток на­столько мал, что измерить его с помо­щью мультиметра DT830B не удалось. При этом транзисторы предварительно не отбирались ни по каким параметрам.

На рис. 5 представлена схема трёх­канального зависимого переключателя. В ней объединены три выключателя, но при необходимости их число может быть увеличено. Кратковременное нажатие на любую из кнопок вызовет включение соответствующего выключателя и под­ключение соответствующей нагрузки к источнику питания. Если нажать на какую-либо другую кнопку, включится соответствующий выключатель, а пре­дыдущий выключится. Нажатие на сле­дующую кнопку включит следующий вы­ключатель, а предыдущий опять отклю­чится. При повторном же нажатии на ту же кнопку последний работающий вы­ключатель выключится, и устройство возвратится в исходное состояние - все нагрузки будут обесточены. Режим переключения обеспечивает резистор R5. При включении какого-либо выклю­чателя напряжение на этом резисторе возрастает, что приводит к закрыванию включённого ранее выключателя. Сопро­тивление этого резистора зависит от тока, потребляемого самими выключа­телями, в данном случае его значение - около 3 мА. Элементы VD1, R3 и С2 обеспечивают прохождение разрядного тока конденсаторов СЗ, С5 и С7. Через резистор R3 конденсатор С2 разряжает в паузах между нажатиями на кнопку. Если эту цепь исключить, останутся только режимы включения и переключе­ния. Заменив резистор R5 проволочной перемычкой, получим три независимо работающих устройства.


Переключатель предполагалось при­менить в коммутаторе телевизионных антенн с усилителями, но с появлением кабельного телевидения необходи­мость в нём отпала, и проект не был реализован на практике.

В выключателях могут быть примене­ны транзисторы самых разных типов, но они должны соответствовать опре­делённым требованиям. Во-первых, все они должны быть кремниевыми. Во-вторых, транзисторы, коммути­рующие ток нагрузки, должны иметь напряжение насыщения Uк-э нас не более 0,2...0,3 В, максимальный допустимый ток коллектора Iкмакс должен быть в несколько раз боль­ше коммутируемого тока, а коэффи­циент передачи тока h31э достаточ­ный, чтобы при заданном токе базы транзистор находился в режиме насыщения. Из имеющихся у меня в наличии транзисторов хорошо заре­комендовали себя транзисторы серий КТ209 и КТ502, несколько хуже - серий КТ3107 и КТ361.

Сопротивления резисторов можно изменять в значительных пределах. Если требуется большая экономичность и не нужна индикация состояния выключате­ля, светодиод не устанавливают, а резис­тор в цепи коллектора ѴТЗ (см. рис. 4) можно увеличить до 100 кОм и более, но надо учесть, что при этом уменьшится базовый ток транзистора ѴТ2 и макси­мальный ток в нагрузке. Транзистор ѴТЗ (см. рис. 3) должен иметь коэффициент передачи тока h31э более 100. Сопротив­ление резистора R5 в зарядной цепи конденсатора С1 (см. рис. 1) и аналогич­ных ему в других схемах может быть в интервале 100.. 470 кОм. Конденсатор С1 (см. рис. 1) и аналогичные ему в дру­гих схемах должны быть с малым током утечки, желательно применить оксидно­полупроводниковые серии К53, но можно применять и оксидные, при этом сопротивление резистора R5 должно быть не более 100 кОм. При увеличении ёмкости этого конденсатора уменьшится быстродействие (время, по истечении которого устройство можно выключить после включения), а если уменьшить - снизится чёткость в работе. Конденсатор С2 (см. рис. 3) - только оксидно-полу­проводниковый. Кнопки - любые мало­габаритные с самовозвратом. Катушка L1 преобразователя (см. рис. 2) приме­нена от регулятора линейности строк чёрно-белого телевизора, хорошо рабо­тает преобразователь и с дросселем на Ш-образном магнитопроводе от КЛЛ. Можно также воспользоваться рекомен­дациями, приведёнными в . Диод VD1 (см. рис. 5) может быть любым маломощ­ным, как кремниевым, так и германие­вым. Диод VD1 (см. рис. 3) должен быть обязательно германиевым.

Налаживания требуют устройства, схемы которых показаны на рис. 2 и рис. 5, остальные в налаживании не нуж­даются, если нет особых требований и все детали исправны. Для налаживания разрядного устройства (см. рис. 2) по­требуется источник питания с регули­руемым напряжением на выходе. Преж­де всего, взамен резистора R4 временно устанавливают переменный резистор сопротивлением 4,7 кОм (в максимум сопротивления). Подключают источник питания, предварительно установив на его выходе напряжение 1,25 В. Вклю­чают разрядное устройство нажатием на кнопку и устанавливают с помощью резистора R8 требуемый ток разрядки. После этого устанавливают на выходе источника питания напряжение 1 В, и с помощью добавочного переменного резистора добиваются выключения устройства. После этого надо несколько раз проверить напряжение выключения. Для этого необходимо увеличить напря­жение на выходе источника питания до 1,25 В, включить устройство, затем не­обходимо плавно уменьшать напряже­ние до 1 В, наблюдая момент выклю­чения. Затем измеряют введённую часть дополнительного переменного резис­тора и заменяют его постоянным с таким же сопротивлением.

Во всех других устройствах также можно реализовать аналогичную функ­цию выключения при снижении входного напряжения. Налаживание производится аналогично. При этом надо иметь в виду то обстоятельство, что вблизи точки вы­ключения транзисторы начинают закры­ваться плавно и ток в нагрузке тоже будет плавно уменьшаться. Если в качестве нагрузки будет радиоприёмник, то это проявится как уменьшение громкости. Возможно, рекомендации, описанные в , помогут решить эту проблему.

Налаживание переключателя (см. рис. 5) сводится к временной заме­не постоянных резисторов R3 и R5 на переменные с сопротивлением в 2...3 ра­за больше. Последовательно нажимая на кнопки, с помощью резистора R5 добиваются надёжной работы. После этого повторными нажатиями на одну и ту же кнопку с помощью резистора R3 добиваются надёжного выключения. Затем переменные резисторы заме­няют постоянными, как сказано выше. Для повышения помехоустойчивости параллельно резисторам R7, R13 и R19 надо установить керамические конден­саторы ёмкостью несколько нанофарад.

ЛИТЕРАТУРА

  1. Поляков В. Электронный выключатель защищает аккумуляторную батарею. - Радио, 2002, № 8, с. 60.
  2. Нечаев И. Электронная спичка. - Радио, 1992, N° 1, с. 19-21.

Возможно, Вам это будет интересно:

meandr.org

Электронный выключатель схема на чипе CD4027B

Электронный выключатель схема - заменяет механический выключатель

Электронный выключатель схема - это простая и недорогая электронная схема с дешевой тактовой кнопкой может управлять включением и выключением питания нагрузки. Схема заменяет более дорогой и крупный механический выключатель с фиксацией. Кнопка запускает ждущий мультивибратор. Выход мультивибратора переключает счетный триггер, логический уровень выхода которого, меняясь после каждого нажатия кнопки, коммутирует питание нагрузки.

Возможны несколько различных вариантов реализации этой схемы. Вариант, в котором использованы два J-K триггера IC1 и IC2 одной микросхемы CD4027B показан на Рисунке 1. Обратная связь, идущая от RC-цепочки, подключенной к выходу IС1 к входу сброса превращает этот триггер в ждущий мультивибратор. Вход J микросхемы IC1 подключен к шине питания, а вход К - к земле, поэтому по переднему фронту тактового импульса на ее выходе устанавливается «лог. 1». Тактовая кнопка включается между тактовым входом микросхемы IС1, и землей. Точно также кнопку можно включить между тактовым входом и положительной шиной питания VDD. Подключение выводов J и К к высокому уровню превращает IC2 в счетный триггер. Микросхема IС2 переключается передним фронтом выходного сигнала IC1.

Понять работу схему можно, посмотрев на временные диаграммы в ее разных точках, изображенные на Рисунке 2. При нажатии кнопки на тактовый вход IС1, начинают поступать импульсы дребезга, передний фронт первого из которых устанавливает на выходе высокий уровень. Конденсатор С1, начинает заряжаться через резистор R1 до уровня «лог. 1». В тот же момент нарастающий фронт импульса, пришедшего на тактовый вход счетного триггера IС2, переключает состояние его выхода. Когда напряжение на конденсаторе С1 достигает порога входа RESET микросхемы IC1 триггер сбрасывается, и уровень выходного сигнала становится низким.

После этого С1 разряжается через R1 до уровня «лог. О». Скорости заряда и разряда С1, одинаковы. Длительность выходного импульса мультивибратора должна превышать время нажатия на кнопку и продолжительность дребезга. Регулировкой подстроечного резистора R1 эту длительность можно изменять в соответствии с типом используемой кнопки. Комплементарные выходы IC2 можно использовать для управления транзисторными силовыми ключами, реле или выводами включения импульсных регуляторов. Схема работает при напряжении от 3 В до 15 В и может управлять питанием аналоговых и цифровых устройств.

Сделай сам

usilitelstabo.ru

Схемы электронных виключателей питания | Техника и Программы

Казалось бы, чего проще, включил питание и прибор, содержащий МК, заработал. Однако на практике бывают случаи, когда обычный механический тумблер для этих целей не годится. Показательные примеры:

Микропереключатель хорошо вписывается в конструкцию, но он рассчитан на низкий ток коммутации, а устройство потребляет на порядок больше;

Необходимо осуществить дистанционное включение/выключение питания сигналом логического уровня;

Тумблер питания сделан в виде сенсорной (квазисенсорной) кнопки;

Требуется осуществить «триггерное» включение/выключение питания повторным нажатием одной и той же кнопки.

Для таких целей нужны специальные схемные решения, основанные на применении электронных транзисторных ключей (Рис. 6.23, а…м).

Рис. 6.23. Схемы электронного включения питания (начало):

а) SI — это выключатель «с секретом», применяемый для ограничения несанкционированного доступа к компьютеру. Маломощный тумблер открывает/закрывает полевой транзистор VT1, который подаёт питание на устройство, содержащее МК. При входном напряжении выше +5.25 В требуется поставить перед М К дополнительный стабилизатор;

б) включение/выключение питания +4.9 В цифровым сигналом ВКЛ-ВЫКЛ через логический элемент DDI и коммутирующий транзистор VT1

в) маломощная «квазисенсорная» кнопка SB1 триггерно включает/выключает питание +3 В через микросхему DDL Конденсатор C1 снижает «дребезг» контактов. Светодиод HL1 индицирует протекание тока через ключевой транзистор VTL Достоинство схемы — очень низкое собственное потребление тока в выключенном состоянии;

Рис. 6.23. Схемы электронного включения питания (продолжение):

г) подача напряжения +4.8 В маломощной кнопкой SBI (без самовозврата). Источник входного питания +5 В должен иметь защиту по току, чтобы не вышел из строя транзистор VTI при коротком замыкании в нагрузке;

д) включение напряжения +4.6 В по внешнему сигналу £/вх. Предусмотрена гальваническая развязка на оптопаре VU1. Сопротивление резистора RI зависит от амплитуды £/вх;

е) кнопки SBI, SB2 должны быть с самовозвратом, их нажимают по очереди. Начальный ток, проходящий через контакты кнопки SB2, равен полному току нагрузки в цепи +5 В;

ж) схема Л. Койла. Транзистор VTI автоматически открывается в момент соединения вилки ХР1 с розеткой XS1 (за счёт последовательно включённых резисторов R1, R3). Одновременно в основное устройство подаётся звуковой сигнал от аудиоусилителя через элементы С2, R4. Резистор RI допускается не устанавливать при низком активном сопротивлении канала «Audio»;

з) аналогично Рис. 6.23, в, но с ключом на полевом транзисторе VT1. Это позволяет снизить собственное потребление тока как в выключенном, так и во включённом состоянии;

Рис. 6.23. Схемы электронного включения питания (окончание):

и) схема активизации МК на строго фиксированный промежуток времени. При замыкании контактов переключателя S1 конденсатор С5 начинает заряжаться через резистор R2, транзистор VTI открывается, МК включается. Как только напряжение на затворе транзистора VT1 уменьшится до порога отсечки, МК выключается. Для повторного включения надо разомкнуть контакты 57, выдержать небольшую паузу (зависит от R, С5) и затем снова их замкнуть;

к) гальванически изолированное включение/выключение питания +4.9 В при помощи сигналов с СОМ-порта компьютера. Резистор R3 поддерживает закрытое состояние транзистора VT1 при «выключенной» оптопаре VUI;

л) удалённое включение/выключение интегрального стабилизатора напряжения DA 1 (фирма Maxim Integrated Products) через СОМ-порт компьютера. Питание +9 В может быть снижено вплоть до +5.5 В, но при этом надо увеличить сопротивление резистора R2, чтобы напряжение на выводе 1 микросхемы DA I стало больше, чем на выводе 4;

м) стабилизатор напряжения DA1 (фирма Micrel) имеет вход включения питания EN, который управляется ВЫСОКИМ логическим уровнем. Резистор RI нужен, чтобы вывод 1 микросхемы DAI «не висел в воздухе», например, при Z-состоянии КМОП-микросхемы или при расстыковке разъёма.

Казалось бы, чего проще, включил питание и прибор, содержащий МК, заработал. Однако на практике бывают случаи, когда обычный механический тумблер для этих целей не годится. Показательные примеры:

  • микропереключатель хорошо вписывается в конструкцию, но он рассчитан на низкий ток коммутации, а устройство потребляет на порядок больше;
  • необходимо осуществить дистанционное включение/выключение питания сигналом логического уровня;
  • тумблер питания сделан в виде сенсорной (квазисенсорной) кнопки;
  • требуется осуществить «триггерное» включение/выключение питания повторным нажатием одной и той же кнопки.

Для таких целей нужны специальные схемные решения, основанные на применении электронных транзисторных ключей (Рис. 6.23, а...м).

Рис. 6.23. Схемы электронного включения питания (начало):

а) SI — это выключатель «с секретом», применяемый для ограничения несанкционированного доступа к компьютеру. Маломощный тумблер открывает/закрывает полевой транзистор VT1, который подаёт питание на устройство, содержащее МК. При входном напряжении выше +5.25 В требуется поставить перед М К дополнительный стабилизатор;

б) включение/выключение питания +4.9 В цифровым сигналом ВКЛ-ВЫКЛ через логический элемент DDI и коммутирующий транзистор VT1

в) маломощная «квазисенсорная» кнопка SB1 триггерно включает/выключает питание +3 В через микросхему DDL Конденсатор C1 снижает «дребезг» контактов. Светодиод HL1 индицирует протекание тока через ключевой транзистор VTL Достоинство схемы — очень низкое собственное потребление тока в выключенном состоянии;

Рис. 6.23. Схемы электронного включения питания (продолжение):

г) подача напряжения +4.8 В маломощной кнопкой SBI (без самовозврата). Источник входного питания +5 В должен иметь защиту по току, чтобы не вышел из строя транзистор VTI при коротком замыкании в нагрузке;

д) включение напряжения +4.6 В по внешнему сигналу £/вх. Предусмотрена гальваническая развязка на оптопаре VU1. Сопротивление резистора RI зависит от амплитуды £/вх;

е) кнопки SBI, SB2 должны быть с самовозвратом, их нажимают по очереди. Начальный ток, проходящий через контакты кнопки SB2, равен полному току нагрузки в цепи +5 В;

ж) схема Л. Койла. Транзистор VTI автоматически открывается в момент соединения вилки ХР1 с розеткой XS1 (за счёт последовательно включённых резисторов R1, R3). Одновременно в основное устройство подаётся звуковой сигнал от аудиоусилителя через элементы С2, R4. Резистор RI допускается не устанавливать при низком активном сопротивлении канала «Audio»;

з) аналогично Рис. 6.23, в, но с ключом на полевом транзисторе VT1. Это позволяет снизить собственное потребление тока как в выключенном, так и во включённом состоянии;

Рис. 6.23. Схемы электронного включения питания (окончание):

и) схема активизации МК на строго фиксированный промежуток времени. При замыкании контактов переключателя S1 конденсатор С5 начинает заряжаться через резистор R2, транзистор VTI открывается, МК включается. Как только напряжение на затворе транзистора VT1 уменьшится до порога отсечки, МК выключается. Для повторного включения надо разомкнуть контакты 57, выдержать небольшую паузу (зависит от R, С5) и затем снова их замкнуть;

к) гальванически изолированное включение/выключение питания +4.9 В при помощи сигналов с СОМ-порта компьютера. Резистор R3 поддерживает закрытое состояние транзистора VT1 при «выключенной» оптопаре VUI;

л) удалённое включение/выключение интегрального стабилизатора напряжения DA 1 (фирма Maxim Integrated Products) через СОМ-порт компьютера. Питание +9 В может быть снижено вплоть до +5.5 В, но при этом надо увеличить сопротивление резистора R2, чтобы напряжение на выводе 1 микросхемы DA I стало больше, чем на выводе 4;

м) стабилизатор напряжения DA1 (фирма Micrel) имеет вход включения питания EN, который управляется ВЫСОКИМ логическим уровнем. Резистор RI нужен, чтобы вывод 1 микросхемы DAI «не висел в воздухе», например, при Z-состоянии КМОП-микросхемы или при расстыковке разъёма.

Практически каждый радиолюбитель хоть раз да применял переключатели П2К, которые могут быть одиночными (с фиксацией или без), или собираться в группы (без фиксации, независимая фиксация, зависимая фиксация). В ряде случаев такие переключатели целесообразнее заменить на электронные, собранные на ТТЛ микросхемах. Именно о таких переключателях мы и поговорим.

Переключатель с фиксацией. Эквивалентом в цифровой схемотехнике такому переключателю служит триггер со счетным входом. При первом нажатии на кнопку триггер переходит в одно устойчивое состояние, при повторном – в противоположное. Но управлять счетным входом триггера кнопкой напрямую невозможно из-за дребезга ее контактов в момент замыкания и размыкания. Одним из самых распространенных методов борьбы с дребезгом является использование кнопки на переключение совместно со статическим триггером. Взглянем на рис.1.

Рис.1

В исходном состоянии на выходах элементов DD1.1 и DD1.2 «1» и «0» соответственно. При нажатии на кнопку SB1 первое же замыкание ее нормально разомкнутых контактов переключает триггер, собранный на DD1.1 и DD1.2 , причем дребезг контактов на дальнейшую его судьбу не влияет – чтобы триггер вернулся в исходное состояние, необходимо подать логический ноль на нижний его элемент. Это может произойти только при отпускании кнопки и снова дребезг не повлияет на надежность переключения. Далее наш статический триггер управляет обычным счетным, который переключается по входу С фронтом сигнала с выхода DD1.2.

Следующая схема (рис.2) работает аналогично, но позволяет сэкономить один корпус, поскольку в качестве статического триггера используется вторая половина микросхемы DD1.

Рис.2

Если применение кнопок с переключающими контактами неудобно, то можно воспользоваться схемой, изображенной на рис.3.

Рис.3

В ней в качестве подавителя дребезга используется цепочка R1,С1,R2. В исходном состоянии конденсатор подключен к цепи +5 В и разряжен. При нажатии на кнопку SB1 начинается заряд конденсатора. Как только он зарядится, на входе счетного триггера сформируется отрицательный импульс, который его и переключит. Поскольку время зарядки конденсатора много больше времени переходных процессов в кнопке и составляет порядка 300 нс, дребезг контактов кнопки не влияет на состояние триггера

Переключатели с фиксацией и общим сбросом . Схема, изображенная на рис.4 представляет собой произвольное количество кнопок с независимой фиксацией и одной кнопкой общего сброса.

Рис.4

Каждый переключатель представляет собой статический триггер, включаемый отдельной кнопкой. Поскольку при появлении даже короткого низкого уровня триггер однозначно переключается и удерживается в таком положении до сигнала «сброс» на другом входе, схема подавления дребезга контактов кнопки не нужна. Сбрасывающие входы всех триггеров соединены и подключены к кнопке SBL, являющейся общей кнопкой сброса. Таким образом включить каждый триггер можно отдельной кнопкой, выключить же можно только все сразу кнопкой «Сброс».

Переключатели с зависимой фиксацией . В этой схеме каждая кнопка включает свой статический триггер и одновременно сбрасывает все остальные. Таким образом мы получаем аналог линейки кнопок П2К с зависимой фиксацией (рис.5).

Рис.5

Как и в предыдущей схеме, каждая кнопка включает свой триггер, но одновременно с этим запускает схему сброса, собранную на транзисторе VT2 и элементах DК.3, DK.4. Рассмотрим работу этого узла. Предположим, нам нужно включить первый триггер (элементы D1.1, D1.2). При нажатии на кнопку SB1 низкий уровень (поскольку конденсатор C1 разряжен) переключит триггер (вход элемента D1.1). Конденсатор тут же начнет заряжаться через цепь SB1, R8. Как только напряжение на нем увеличится примерно до 0.7В, откроется транзистор VT1, но для элемента D1.1 такое напряжение еще является логическим «0».

Транзистор тут же переключит триггер Шмидта на элементах DK.3, DK.4, который сформирует короткий импульс на входах сброса всех триггеров. Все триггеры будут сброшены (если до этого были включены), кроме первого, поскольку через кнопку SB1 на его верхний по схеме вход все еще подается логический «0» (напряжение ниже 1 В). Таким образом, задержка прохождения сигнала сброса достаточна для прекращения дребезга контактов, но сброс произойдет быстрее, чем мы отпустим кнопку, запрещающую переключение соответствующего триггера

Интересную и несложную схему переключателя с зависимой фиксацией можно построить на микросхеме К155ТМ8 (рис.6).

Рис.6

При подаче питания цепочка R6, С1 сбрасывает все триггеры и на их прямых выходах устанавливается низкий логический уровень. На входах D так же уровень низкий, поскольку все они замкнуты каждый через свою кнопку на общий провод. Предположим нажата кнопка SB1. На входе первого триггера устанавливается «1» (благодаря R1), на общем тактирующем входе – «0» (через переключающий контакт кнопки). Пока теоретически ничего не происходит, поскольку микросхема стробирует данные по положительному перепаду. А вот при отпускании кнопки данные со входов будут переписаны в триггеры – в 2, 3, 4 – «0», в 1 – «1», поскольку положительный фронт на входе С появится раньше, чем верхние по схеме контакты SB1 замкнутся. При нажатии любой другой кнопки цикл повторится, но «1» будет записана в тот триггер, чья кнопка будет нажата. Это в теории. Практически из-за дребезга контактов данные с входа перепишутся сразу после нажатия кнопки и по отпусканию ее не изменятся.

Все вышеперечисленные схемы с зависимой фиксацией обладают одним существенным недостатком, который свойственен и переключателям П2К – возможность «защелкивания» нескольких кнопок при их одновременном нажатии. Избежать этого позволит схема, собранная на приоритетном шифраторе (рис.7).

Рис.7

Схема, конечно, с виду достаточно громоздка, но фактически состоит лишь из трех корпусов без дополнительных навесных элементов и, что немаловажно, не требует кнопок на переключение. При нажатии на кнопку, приоритетный шифратор DD1 устанавливает на своем выходе двоичный код (инверсный) этой кнопки и подтверждает его сигналом G «строб», который тут же записывает данные в микросхему DD2, работающую в режиме четырехразрядного параллельного регистра-защелки. Здесь код еще раз инвертируется (выходы у регистра инверсные) и поступает на обычный двоично-десятичный дешифратор DD3. Таким образом, на соответствующем выходе дешифратора устанавливается низкий уровень, который будет неизменным до нажатия любой другой кнопки. Невозможность одновременного защелкивания двух кнопок обеспечивает схема приоритета (подробнее о работе приоритетного шифратора я писал ). Поскольку микросхема К155ИВ1 прямо таки создана для наращивания разрядности, было бы глупо не воспользоваться этим и не собрать блок переключателей с зависимой фиксацией на 16 кнопок (рис.8).

Рис.8

Останавливаться на работе схемы я не буду, поскольку принцип наращивания разрядности ИВ1 я подробно описал . Разводку выводов питания ТТЛ микросхем серии К155 (1533, 555, 133) можно посмотерть .

Рассмотрено 6 принципиальных схем самодельных электронных выключателей и реле времени, выполненных на основе микросхем К561ТМ2 и CD4060, описана их работа и возможности по применению. В настоящее время в радиоэлектронной аппаратуре, в основном, электронные выключатели, либо и электронный и механический.

Электронный выключатель управляется обычно одной кнопкой, - одно нажатие, и аппарат включен, при следующем нажатии -выключен. Реже бывают с двумя кнопками, - одна для включения, вторая для выключения.

Электронный выключатель в радиоэлектронной аппаратуре в подавляющем большинстве случаев входит в состав контроллера управления, управляющего и другими функциями аппарата.

Но, если нужно оборудовать электронным выключателем какое-то устройство, самодельное или у которого не предусмотрен электронный выключатель, это можно по одной из приводимых здесь схем, на основе микросхемы КМОП-логики и мощного полевого ключевого транзистора.

Выключатель управляемый одной кнопкой

Первая схема простого выключателя, управляемого одной кнопкой приведена на рисунке 1. Мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им D-триггер микросхемы К561ТМ2.

Данная схема, как и все последующие, потребляет минимальный ток, измеряемый единицами микроампер, и поэтому, практически не оказывает влияния на расход источника питания.

Рис. 1. Схема простого электронного выключателя, управляемого одной кнопкой.

То есть, на его прямом выходе - единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку не поступает.

При этом, на инверсном выходе триггера будет напряжение логического нуля. Оно через резистор R3, с небольшой задержкой, поступает на вход «D» триггера.

Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Теперь на инверсном выходе триггера -единица. Эта единица, с небольшой задержкой, через резистор R3 поступает на вход «D» триггера.

Теперь, при следующем нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в единицу. Единица на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 падает до величины, недостаточной для открывания полевого транзистора VТ1. Нагрузка выключается.

Электронный переключатель двух нагрузок

Но не всегда требуется именно выключатель, бывает что нужен переключатель. На рисунке 2 показана схема электронного переключателя двух нагрузок. Главное отличие от схемы на рис.1 в том, что здесь два мощных полевых транзистора.

При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, питание на нагрузку 1 не поступает. А напряжение между истоком и затвором транзистора VТ2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2.

Рис. 2. Схема простого самодельного электронного переключателя двух нагрузок.

При этом, нуль с инверсного выхода триггера через резистор R3, с небольшой задержкой, поступает на вход «D» триггера. Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку 1 поступает питание.

Но транзистор VТ2 при этом закрывается, и нагрузка 2 выключается. Таким образом, при каждом нажатии кнопки S1 происходит переключение нагрузок.

Несколько слов, о назначении цепи C2-R3 в схемах на рис.1 и рис.2. Дело в том, что кнопка -это механические контакты, которые соединяются механически, и здесь практически не возможно обойтись без дребезга контактов. И чем больше износ кнопки, тем сильнее проявляется дребезг её контактов.

Поэтому, как при нажатии кнопки, так и при её отпускании, может формировать не один импульс, а целая серия коротких импульсов. И это может привести к многократному переключению триггера, и в результате, установке его в произвольное состояние. Чтобы такого не происходило здесь есть цепь C2-R3.

Она несколько задерживает приход логического уровня с инверсного выхода триггера на его вход «D». Поэтому, пока длится дребезг контактов, напряжение на входе «D» не меняется, и импульсы дребезга на состояние триггера не влияют.

Выключатель с двумя кнопками

Как уже отмечено выше, электронные выключатели бывают как с одной кнопкой, так и с двумя, - одна для включения, другая для выключения. На рисунке 3 показана схема именно выключателя.

Рис. 3. Схема электронного выключателя нагрузки с двумя кнопками.

Здесь точно так же, мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им триггер микросхемы К561ТМ2. Только работает он не как D-триггер, а как RS-триггер. Для этого его входы «С» и «D» соединены с общим минусом питания (то есть, на них всегда логические нули).

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

То есть, на его прямом выходе - единица. При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку не поступает.

Для включения нагрузки служит кнопка S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1.

На нагрузку поступает питание. Для того, чтобы выключить нагрузку нужно нажать кнопку S2. При её нажатии триггер переключается в положение «S», то есть, на его прямом выходе устанавливается логическая единица.

Единица на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 падает до величины, недостаточной для открывания полевого транзистора VT1. Нагрузка выключается.

Две кнопки и две нагрузки

Электронный переключатель с двумя кнопками работает логичнее однокнопочного, во всяком случае понятно, что одна кнопка включается одну нагрузку, а другая - другую нагрузку. На рисунке 4 показана схема двухкнопочного электронного переключателя двух нагрузок.

Рис. 4. Схема электронного переключателя с двумя кнопками для двух нагрузок.

Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе - единица, на инверсном - ноль.

При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку 1 не поступает.

А напряжение между истоком и затвором транзистора VT2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2. Для включения нагрузки 1 служит кнопка 51. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1. На нагрузку поступает питание.

При этом, на инверсном выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VT2 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку 2 не поступает.

Для включения нагрузки 2 служит кнопка 52. При её нажатии триггер переключается в положение «S», то есть, на его инверсном выходе устанавливается логический ноль. Логический нуль на затворе VT2 приводит к тому, что напряжение между истоком и затвором VT2 возрастает до величины, достаточной для открывания полевого транзистора VT2.

На нагрузку 2 поступает питание. При этом, на прямом выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку 1 не поступает.

Электронное реле времени

Но понадобиться могут не только выключатели и переключатели, но реле времени. На рисунке 5 показана схема электронного реле времени, которое включает нагрузку при нажатии кнопки S1, а выключает её примерно через 30 секунд.

Рис. 5. Схема электронного реле времени для включения нагрузки при нажатии кнопки и выключения через 30 секунд.

Реле времени запускается кнопкой S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

В то же время, логическая единица с инверсного выхода начинает через резистор R2 медленно заряжать конденсатор С1. Время включенного состояния нагрузки истекает тогда, когда конденсатор С1 зарядится до напряжения, которое будет понято микросхемой как логическая единица. Тогда триггер установится в состояние «S».

То есть, на его прямом выходе - единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, -питание на нагрузку выключится. Время включенного состояния нагрузки зависит от цепи C1-R2.

Реле времени на 8 часов

Изменением составляющих этой цепи можно изменять это время в широких пределах, но очень большого времени выдержки достигнуть сложно. На рисунке 6 показана схема реле времени на цифровой микросхеме, время включенного состояния нагрузки в котором составляет около 8 часов.

Рис. 6. ЁПринципиальная схема реле времени на цифровой микросхеме, которое включает нагрузку на 8 часов.

Реле времени запускается кнопкой S1. При её нажатии счетчик микросхемы D1 переключается в нулевое состояние, то есть, на всех его выходах устанавливается логический ноль, в том числе и на самом старшем выходе D14. Откуда он поступает на затвор VТ1.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

Далее, счетчик начинает отсчитывать время, считая импульсы, которые вырабатывает его встроенный мультивибратор. Спустя заданное время на выводе 3 устанавливается логическая единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, - питание на нагрузку выключится.

В то же время, логическая единица через диод VD3 поступает на вывод 11 D1 и блокирует внутренний мультивибратор микросхемы. Генерация импульсов прекращается. Во всех схемах для подачи питания на нагрузку используются транзисторы IRFR5505. Это ключевой полевой транзистор с допустимым током коллектора 18А и сопротивлением в открытом состоянии 0,1 От.

Открывается транзистор при напряжении на затворе не ниже 4,25V. Поэтому и минимальное напряжение питания в схемах указано 5V, так сказать, чтобы точно хватило. Но, при напряжении питания схемы до 7V и при большом токе нагрузки транзистор все же открывается не полностью.

И сопротивление его канала существенно больше 0,1 Ом, поэтому, при питании ниже 7V ток нагрузки не должен превышать 5А. При питании же более высоким напряжением, ток может быть до 18А. Так же нужно учесть, что при токе нагрузки более 4А транзистору нужен будет радиатор для отвода тепла. Одно из свойств таких транзисторов, -это относительно большая емкость затвора.

И именно этого боятся микросхемы КМОП - относительно большой емкости на выходе. Потому что, хотя статическое сопротивление затвора и стремится к бесконечности, но при изменении напряжения на затворе возникает существенный бросок тока на заряд / разряд его емкости.

В очень редких случаях это повреждает микросхему, гораздо чаще это приводит к сбоям в работе микросхемы, особенно триггеров и счетчиков. Чтобы этих сбоев не происходило между выходами микросхем и затворами транзисторов в этих схемах включены токоограничивающие резисторы, например, R4 в схеме на рис.1. Плюс два диода, ускоряющих заряд / разряд емкости затвора.

Литовкин С. Н. РК-08-17.

Литература: И. Нечаев. - Электронный выключатель. Р-02-2004.