Чем обрабатываются бактерицидные лампы. Применение ультрафиолетовых бактерицидных установок в образовательных организациях

Возведение крыши

Cтраница 1


Бактерицидные обработки окупают затраты не только на их проведение, но и не очевидные с экономической точки зрения затраты на другие антикоррозионные мероприятия, в частности на закупку ингибитора коррозии.  

Бактерицидные обработки позволяют повысить нефтеотдачу пластов, что необходимо учитывать и анализировать.  

Первая бактерицидная обработка сточных вод системы ППД была произведена в 1988 году. Видно, что наклон линии тренда П ниже линии I. Точка 1 является той точкой отсчета, начиная с которой аварийность водоводов Шкаповского месторождения, начала неуклонно снижаться.  

Третья бактерицидная обработка (рис. 1 точка 3) была произведена в 1998 году. Бактерицид подавался на прием трубного отделителя ТВО-1 КССУ цППН, что позволило дополнительно обработать все оборудование цППН на девонском потоке.  

Вторая бактерицидная обработка сточных вод девонского потока Шкаповского месторождения (рис. 1 точка 2) была проведена в 1991 году.  

При бактерицидных обработках наблюдается также повышение приемистости скважин за счет отмыва биогенных и других отложений.  

Из практики бактерицидной обработки нефтепромысловых объектов установлено, что время полного восстановления биоценоза составляет до 6 мес. Поэтому бактерицидную обработку следует осуществлять не менее 3 раз в год. При этом добывающие скважины и объекты подготовки нефти и воды должны быть обработаны до обработки систем ППД.  

Оценку эффективности бактерицидной обработки нефтепромысловых систем проводят по изменению (до и после обработки) концентрации H2S, ионов SO2 -, Fe2 - f Fe3, количества клеток СВБ, скорости коррозии оборудования, а также параметров эксплуатации объектов этих систем, в частности, дебита и обводненности продукции добывающих и приемистости нагнетательных скважин.  

Из практики бактерицидной обработки нефтепромысловых объектов установлено, что время полного восстановления биоценоза составляет до 6 месяцев. Поэтому бактерицидную обработку следует производить не менее 3 - х раз в год. При этом добывающие скважины и объекты подготовки нефти и воды должны быть обработаны до обработки систем ППД.  

Оценку эффективности бактерицидной обработки нефтепромысловых систем производят по изменению (до и после обработки) концентрации H2S, ионов SO42, Fe2 Fe3, количества клеток СВБ, скорости коррозии оборудования, а также параметров эксплуатации объектов этих систем, в частности, дебита и обводненности продукции добывающих и приемистости нагнетательных скважин.  

Для оценки эффективности бактерицидных обработок оборудования системы ППД необходимо определить время полного восстановления биоценоза СВБ в системе закачки сточных вод. Это возможно произвести путем оценки динамики содержания СВБ в сточных водах, определить начало роста нового поколения активных (адгезирован-ных) бактерий в системе утилизации сточных вод после их однократного подавления бактерицидом.  

В феврале 2001 года была проведена четвертая бактерицидная обработка.  

Следует отметить также, что после бактерицидной обработки скважи-н отмечается некоторое увеличение приемистости скважин (рис. 3), это объясняется отмывкой призабойной зоны от биомассы, накапливаемой в пласте в процессе закачки воды.  

Исходя из этого, существующие способы борьбы с жизнедеятельностью СВБ предполагают бактерицидную обработку призабойной зоны путем добавки реагентов в воду, закачиваемую в пласт. Однако точками интенсивного роста и размножения бактерий могут быть и другие участки в системе ППН и ППД.  

Наряду с влиянием бактерицида на численность клеток СВБ, была произведена оценка влияния бактерицидной обработки на аварийность водоводов. Для этого был построен график накопленной аварийности по причине внутренней коррозии с 1985 года по июнь 2001 года (рис. 1), выделены характерные точки, построены линии тренда по выделяющимся периодам.  

Важные документы:

  • Письмо от 14 февраля 2019 года № 2И-409/19 О лекарственном препарате Эреспал Росздравнадзор предписывает изъять из обращения и вернуть поставщикам все серии лекарственного препарата Эреспал Врио Руководителя Пархоменко Д.В.
  • ПИСЬМО от 27 декабря 2018 г. № N 18-3/10/2-708 О разъяснении норм Приказа Минздрава России от 26.10.2017 N 871н Минздрав РФ разъясняет положения Приказа от 26.10.2017 г. N 871н "Об утверждении Порядка определения начальной (максимальной) цены контракта, цены контракта, заключаемого с единственным поставщиком (подрядчиком, исполнителем), при осуществлении закупок лекарственных препаратов для медицинского применения" Н.А.ХОРОВА
  • ПРИКАЗ от 31 октября 2018 г. № N 749 ОБ УТВЕРЖДЕНИИ ОБЩИХ ФАРМАКОПЕЙНЫХ СТАТЕЙ И ФАРМАКОПЕЙНЫХ СТАТЕЙ И ПРИЗНАНИИ УТРАТИВШИМИ СИЛУ НЕКОТОРЫХ ПРИКАЗОВ МИНЗДРАВМЕДПРОМА РОССИИ, МИНЗДРАВСОЦРАЗВИТИЯ РОССИИ И МИНЗДРАВА РОССИИ Приказом утверждены 319 Общих фармакопейных статей (Приложение № 1) и 661 Фармакопейная статья (Приложение № 2) Государственной фармакопеи 14-го издания. При этом часть статей Фармакопеи 13-го издания вошли в новое издание без изменений. Все утвержденные статьи вводятся в действие с 1 декабря 2018 года.
    Министр В.И.СКВОРЦОВА

Последние вопросы:

      Вопрос: Так как в СМИ прошла информация о выявлении неблагоприятных факторов при применении лекарственного препарата Эреспал (Фенспирид) покупатели стали обращаться в аптеки за осуществлением возврата некачественного препарата, приобретенного ранее (причем покупки, осуществленные от недели до нескольких месяцев назад) и получением потраченных денежных средств. Как поступить в данном случае аптекам? На момент продажи лекарственного препарата, сомнений в качестве не было. Чем аргументировать отказ?В течение какого периода времени аптека обязана принимать от покупателей возврат ранее приобретенного Эриспала, предписанного к возврату в соответствии с письмом Росздравнадзора?

      Вопрос относится к теме:

      Организация работы фармацевтических предприятий (всего 4433 ответ(а,ов))
      Ответ »
    • Вопрос: Аптека работает круглосуточно. В ассортименте аптеки имеются сильнодействующие ЛП и другие, подлежащие ПКУ. Хотим ограничить время отпуска этой группы медикаментов с 22-00 до 8-00, т.к. в это время часто обращаются посетители с "сомнительными" рецептами, фармацевтическая экспертиза и проверка которых в это время затруднена. Сейф в это время будет закрыт и опечатан. Будет ли нарушением такое ограничение? В торговом зале будет размещена соответствующее предупреждение.

При хранении и переработке пищевого сырья происходит дополнительное инфицирование его микроорганизмами от средств транспортировки и оборудования, воздуха производственных помещений, обслуживающего персонала и т. д.

Ни стерилизация, ни другие виды специальной обработки не обеспечивают стойкости готовой продукции, если на предприятии высокая микробная обсемененность сырья и технологического оборудования. Предупредить контактные инфекции можно лишь при тщательном соблюдении санитарно-гигиенических требований к условиям производства.

Метаболизм микроорганизмов приводит к химическому и физическому изменению пищевых продуктов, вызывающему биологическую нестабильность и снижение их качества (изменение вкуса, консистенции или полная порча), возникновение пищевых отравлений и опасных для жизни инфекционных заболеваний. Условия для развития микрофлоры зависят от вида перерабатываемого сырья (химического состава, структуры, консистенции) и разных внешних факторов (температуры, содержания кислорода в воздухе), которые неодинаковы для различных отраслей пищевой промышленности. Вредную микрофлору в зависимости от происхождения можно разделить на две основные группы: сапрофитную и патогенную. С точки зрения практической микробиологии пищевых продуктов, нет необходимости в четком разделении между этими группами микроорганизмов, однако для разработки научно обоснованных методов дезинфекции такой анализ представляется полезным.

К сапрофитным относятся микроорганизмы, ухудшающие качество продукции или безвредные для нее. Они принадлежат к различным группам - бактериям, плесневым грибам и дрожжам, причем по количеству представителей и причиняемому Ущербу ведущее место занимают бактерии. При нарушении санитарно-гигиенических требований сапрофитная микрофлора может развиваться в большинстве продуктов и образовывать токсичные продукты обмена, потребление которых может привести к тяжелым пищевым отравлениям и даже к смертельному исходу.

Значительное место в пищевом рационе занимают молоко и молочные продукты. Вместе с тем молоко является скоропортящимся продуктом и представляет собой благоприятную среду для развития возбудителей различных пищевых инфекций и микроорганизмов, вызывающих отравление. Микробное заражение молока может привести также к различным порокам готового продукта. Так, развитие бактерий Streptococcus lastis приводит к скисанию молока, бактерии Alcaligenes viscosus вызывают свертывание молока и придают ему прогорклый вкус. Горький вкус появляется также при наличии в молоке протеолитических бактерий Streptococcus liquefaciens. На микробиологические показатели при переработке молока и молочных продуктов существенное влияние оказывает качество дезинфекции производственных емкостей и технологического оборудования, которые служат источником вторичного обсеменения сырья нежелательной микрофлорой.

В производстве хлебобулочных изделий существенную трудность представляет проблема засорения посторонней микрофлорой культурных пекарских дрожжей при непрерывном технологическом процессе их приготовления в ферментерах. Низкая pH мелассового сусла препятствует бактериальной инфекции, однако масляно-, молочно — и уксусно-кислые бактерии могут активно развиваться. Спороносные бактерии рода Clostridium создают условия, неблагоприятные для размножения пекарских дрожжей, и придают им неприятный прогорклый вкус.

Использование при выпечке хлеба пшеничной муки, инфицированной спорами Bacillus mesentericus, может привести к его заражению тягучестью (картофельной болезнью) и распространению ее на всем хлебопекарном заводе. Кроме того, наличие в воздухе указанных спор приводит к инфицированию последующих партий чистой муки.

Наряду с бактериальной микрофлорой в хлебопекарной промышленности нежелательным является также развитие диких дрожжей.

На пивоваренных заводах к вредным микроорганизмам относят дикие дрожжи родов Saccharomyces, Candida и другие, а также молочно — и уксусно-кислые бактерии Lactobacillus, Micrococcus, Sarcinia. При инфицировании пиво сильно мутнеет, появляются горечь и неприятный вкус, посторонние запахи. Известную роль вредителей пивоваренного производства играют плесневые грибы Penicillium, Aspergillus и др. Наиболее опасными, вызывающими помутнение и почти всегда быстрое прокисание пива, являются молочно-кислые бактерии в форме кокков и палочек, устойчивые к кислоте и антисептическому воздействию хмеля. Микрофлора хорошо адаптируется к производственным условиям и очень быстро развивается даже при температуре бродильного и лагерного подвалов. Источником инфекции при главном брожении и дображивании могут быть чаны, танки и другие технологические резервуары.

При хранении и переработке фруктов и овощей причины порчи весьма разнообразны. Наряду с процессами ферментативного разрушения значительную роль играют различные виды микробных возбудителей гнили. Многие возбудители проникают в плоды еще во время их развития, однако определенный ущерб наносит инфицирование плодов в хранилищах, технологическом оборудовании и т. д. Фрукты и овощи (особенно с нарушенной естественной защитной системой) являются хорошей питательной средой для микроорганизмов, поэтому каждый год в результате гниения плодов теряется значительная часть урожая. На практике, в зависимости от вида микроорганизмов-вредителей и внешней картины болезни, различают несколько наиболее распространенных форм порчи. Гриб Rhizopus nigricans и родственные ему виды приводят к возникновению бактериальной мокрой гнили плодов, преимущественно клубники. Фрукты с сухой гнилью, которая известна также под названием серая гниль, поражены грибами рода Gloeosporium. Сердцевинная гниль является следствием поражения плодов различными видами - Fusarium, Botrytis, Alternaria, Penicillium, Frichothecium, Cladosporium и др. Инфекционное заболевание плодов - горькую гниль вызывают три вида Gloeosporium perennans, G. album и G. fructigenum с Glomerella cingulata в качестве основной плодовой формы. Горькая гниль может привести к значительным потерям вишни. Одна из форм горькой гнили, вызванная Trichothecium roseum, имеет ограниченное распространение на поверхности фруктов и названа гнилью оболочки. К распространенным формам микробной порчи плодов относятся также коричневая гниль, возбудителем которой являются грибы рода Sclerotinia, земная гниль, обусловленная плесневыми грибами Penicillium expansum, фруктовая гниль (возбудитель - Phytophthora cactorum) и др. Помимо важнейших возбудителей плодовой гнили, рассмотренных выше, продукты растениеводства могут подвергаться воздействию и других многочисленных микроорганизмов, вызывающих порчу. Это особенно следует учитывать при хранении и транспортировке спелых фруктов.

По химическому составу фруктовые соки и морсы являются благоприятной средой для развития многих микроорганизмов. Потребляются фруктовые соки значительно позже их производства, в связи с чем возникает необходимость в хранении и обеспечении стойкости большого количества соков. Для уничтожения вредных микроорганизмов в свежем соке используют различные способы специальной обработки: насыщение CO 2 , замораживание, стерилизацию и пастеризацию, обеспложивающую фильтрацию и др. Последующее хранение осуществляют преимущественно в танках, стеклянных баллонах, бочках и бетонных резервуарах. При этом серьезной проблемой является загрязнение производственных емкостей патогенной микрофлорой, приводящей к быстрой порче соков вследствие спиртового брожения, плесневения, молочно-кислого брожения и других нежелательных изменений.

К бактериальной порче фруктовых соков приводят преимущественно кислотообразующие виды, такие, как молочно-, уксусно — и масляно-кислые бактерии. Бактериальное инфицирование обычно проявляется помутнением соков, значительным содержанием молочной, уксусной и масляной кислот, образованием газов. Дрожжи приводят к помутнению, образованию донного осадка и плесневой пленки на поверхности соков. Дрожжи рода Schizosaccharomyces вызывают биологическое кислотопонижение и брожение плодово-ягодных соков.

Сложной многокомпонентной неустойчивой системой, способной изменяться под действием различных физико-химических и биологических факторов, является вино. К изменениям биологического характера относятся заболевания вин, вызываемые различными родами бактерий, дрожжей и плесневых грибов. Так, молочно-кислое брожение крепких и десертных вин вызывают бактерии Lactobacteria сеае, уксусно-кислые бактерии Acetobacter aceti, Acetobacter xylinum, Acetobacter Kutzingianum, Acetobacter Pasterianum являются причиной уксусного скисания вин-опасного и наиболее распространенного заболевания. Ряд патогенных бактерий приводит к ожирению вина, прогорканию, появлению мышиного привкуса и другим порокам. К группе дрожжей-вредителей винодельческого производства относятся различные виды спорогенных дрожжей родов Saccharomyces, Hansenula, Pichia, Saccharomycodes, Zygosaccharomyces, Schizosaccharomyces и не образующих спор дрожжей Candida mycoderma, Brettonomyces и др. Пленчатые дрожжи (Candida mycoderma, Hansenula, Pichia) являются возбудителями цвели вина, вызывают помутнение и дестабилизацию столовых вин. Следует отметить, что в виноделии существенную роль в обеспечении вкуса вина и его стойкости при хранении играет чистота технологических емкостей, в которых вино образуется, формируется, созревает и стареет. Недоброкачественно подготовленные производственные резервуары являются постоянным источником образования болезнетворной микрофлоры, вызывающей разнообразные пороки вина и придающей ему посторонние привкусы и запахи.

Еще большую опасность, чем порча пищевых продуктов, представляет возможность инфицирования пищевого сырья во время переработки и последующего попадания в готовые пищевые продукты промышленного производства токсичных микроорганизмов. Патогенные микроорганизмы (энтеробактерии или кишечные бактерии) включают разнообразную по свойствам микрофлору от сравнительно безвредной до сильно патогенной, вызывающей опасные для жизни инфекционные заболевания (брюшной тиф, дизентерию, паратифы и др.).

Одним из характерных микробиологических возбудителей болезней, передаваемых через продукты питания, являются бактерии группы Salmonella. Сальмонеллез обычно развивается в результате потребления зараженных продуктов, приготовленных или сохранявшихся в условиях, благоприятных для развития этого микроорганизма. Основным источником заражения человека сальмонеллами считаются продукты животного происхождения (мясо, домашняя птица, непастеризованные яичные продукты). Так, употребление яичных продуктов, содержащих значительное число микроорганизмов группы Salmonella, в качестве компонентов при производстве хлебобулочных изделий или в готовых салатах может вызвать вспышку отравления, так как эти продукты не подвергаются тепловой обработке, достаточной для уничтожения указанных микроорганизмов. Продукты, производимые или обрабатываемые с нарушением санитарно-гигиенических норм, могут быть инфицированы сальмонеллами и при неправильной транспортировке, хранении и приготовлении могут стать источником заболевания.

Другое распространенное инфекционное заболевание - шигеллез вызывают бактерии Shigella. Установлено, что Shigella dysenteriae вырабатывает энтеротоксин с высокой цитотоксичностью. Наиболее распространенным представителем группы кишечной палочки, ответственным за диарейные заболевания, являются бактерии Escherichia coli. Важное значение имеют и другие серотипы. При этом необходимо отметить, что Е. coli не всегда бывают патогенными. Помимо рассмотренных, причиной пищевых токсикоинфекций могут явиться и другие грамотрицательные бактерии: Pseudomonas, Yersinia enterocolitica и др.

Одна из наиболее распространенных пищевых инфекций - ботулизм, вызываемый бактериями Clostridium botulinum. Возбудители ботулизма хорошо размножаются в кулинарно обработанных и длительное время хранящихся продуктах. Большинство мясных, рыбных, овощных консервов являются для них благоприятной средой. Известны также случаи развития этих бактерий в некоторых фруктовых консервах.

Имеются сведения о пищевых токсикоинфекциях, связанных с аэробными спорообразующими бациллами. Bacillus cereus относится к крупным грамположительным аэробным спорообразующим бациллам, способным расти и в анаэробных условиях. Микроорганизм ответствен за порчу пастеризованного молока и сливок (прогоркание). Однако данные позволяют отнести эти бациллы к числу патогенных микроорганизмов. В малых количествах Bacillus cereus не опасен, поэтому основной задачей профилактических мероприятий должно являться предотвращение прорастания спор и последующего размножения вегетативных клеток в готовых продуктах.

Проблемой международного значения являются энтеротоксикозы, вызванные стафилококковой микрофлорой. По данным, около 50% выделяемых Staphylococcus aureus способны при испытаниях в лабораторных условиях вырабатывать энтеротоксин, более того, один и тот же штамм может вырабатывать два и более энтеротоксина.

Вспышки септической ангины и скарлатины являются результатом пищевых токсикоинфекций, вызванных бактериями Streptococcus. Потребление сырого молока и его продуктов, инфицированных бактериями Brucella, приводит к заражению бруцеллезом. Хотя в молоке бактерии Brucella не размножаются, они переносят естественное скисание и процессы переработки молока при изготовлении таких продуктов, как масло, мягкие сыры и мороженое. В окружающей среде при отсутствии прямого солнечного освещения бактерии Brucella сохраняются в течение многих недель и могут переносить замораживание, однако дезинфицирующие средства и нагревание свыше 333 К приводят к их инактивации.

Присутствие вирусов в пищевом сырье может привести к инфекционным заболеваниям вирусной природы, таким, например, как инфекционный гепатит, полиомиелит, гастроэнтерит и др. Возможным источником вспышек инфекционного гепатита являются холодные мясные продукты и салаты, реже молоко и молочные продукты. Причиной заражения пищевого сырья кишечными вирусами является контакт загрязненной воды или рук человека с технологическим оборудованием.

Вирусы размножаются только в соответствующих живых клетках, поэтому при попадании в пищевые продукты они могут или сохраниться, или инактивироваться (потерять инфекционность). Основным фактором, определяющим устойчивость вирусов в продуктах питания, является температура. Термическая обработка, сопоставимая по интенсивности с пастеризацией молока, приводит к полному подавлению вирусов в пищевом продукте. В то же время при низких температурах или в замороженном состоянии находящиеся в продуктах вирусы сохраняются столько же, сколько и сами продукты. Следует отметить, что вирусы редко попадают в пищевые продукты при их производстве, хранении и распределении, а преимущественно во время приготовления пищи и при сервировке.

В результате метаболизма не менее чем 150 видов плесневых грибов на определенных пищевых продуктах и в соответствующих условиях образуются вещества (микотоксины), токсичные при пероральном приеме для человека. В то же время очень часто в зараженных грибами продуктах микотоксины отсутствуют. Микотоксины, как правило, резистентны к обычным методам обработки. К числу алиментарных микотических инфекций относят, например, фикомикоз, который вызывают попавшие с пищей в организм человека Mucora сеае, особенно родов Absidia, Rhizopus, Mortierella, Basiodobobus, Mucor и Cunninghamella. Борьба с микотоксикозами состоит в обеспечении условий производства, переработки, хранения, перевозки и распределения пищевых продуктов, обеспечивающих предотвращение образования микотоксинов. Особенно важно предотвратить рост грибов в продуктах при хранении.

Биологические особенности микроорганизма определяют его устойчивость к бактерицидной обработке. Существенную роль при этом играют строение микробной клетки, проницаемость ее оболочек и степень проникновения бактерицидного агента. Установлено, в частности, что расположение на поверхности клеток фосфолипидов способствует устойчивости микробных клеток к действию дезинфектанта.

Устойчивость микроорганизмов к действию бактерицида определяет также их способность к спорообразованию. В этом отношении всю микрофлору делят на образующую и необразующую споры. В качестве санитарно-показательной микрофлоры при контроле качества дезинфекции обычно используют кишечную палочку, которая не образует спор и обладает средней устойчивостью. Наиболее стойкими из неспоровых микробов являются стафилококки и стрептококки, а из них - золотистый стафилококк (St. aureus), который служит эталоном для оценки эффективности обеззараживания. Споровая группа микроорганизмов наиболее устойчива к бактерицидному воздействию различных неблагоприятных факторов. Так, например, споры сибирской язвы сохраняют жизнеспособность в сухой садовой земле в течение 15 лет, в сырой - 4 года, в морской воде - 8-12 лет.

Резистентность к бактерицидному препарату различных штаммов одного и того же вида микрофлоры может сильно различаться, что объясняется способностью многих микроорганизмов образовывать в соответствующих условиях различные мутанты, которые могут в значительной степени отличаться устойчивостью от родительского штамма. Последнее обстоятельство представляет большие трудности для достижения бактерицидного эффекта при обеззараживании объектов. Другим, не менее существенным затруднением при разработке режимов бактерицидной обработки различных объектов является необходимость определения массивности их заражения, поскольку с увеличением концентрации микробных клеток повышается их индивидуальная резистентность к обеззараживающему агенту.

Устойчивость микробных клеток к бактерицидной обработке зависит также от условий культивации. Так, устойчивость кишечной палочки к 30-минутному нагреванию при 326 К различна в зависимости от температуры ее культивирования: число живых клеток в этих условиях среди микроорганизмов, выращенных при 301 К, составляет 7-8%, среди культур, выращенных при 303 К, 24-34%, и среди культур, выращенных при 311,5 К, 65-83%. Причиной такого разброса данных по резистентности бактерий кишечной палочки является тот факт, что при отпимальных условиях размножение микробов происходит в 2 раза быстрее и штаммы, выращенные при температуре 311,5 К, имеют большее количество зрелых клеток, которые обладают более значительной, чем молодые, устойчивостью к теплу в связи с меньшим содержанием влаги в клетке. Типичная кривая развития микрофлоры характеризуется на начальном этапе фазой отставания - лаг-фазой, а затем фазой экспонентного или логарифмического роста. Таким образом, как следует из приведенного примера, важным, способом контроля микробиальной обсемененности является регулирование условий окружающей среды, допускающих присутствие микроорганизмов в фазе отставания.

В этом отношении наибольшую трудность представляют термостойкие бактерии, большинство которых относится к мезофильным микроорганизмам. Эта микрофлора не развивается при температурах пастеризации и кратковременной стерилизации, но многие клетки в культуре способны сохранять свою жизнеспособность, на протяжении всего процесса термической обработки, а после: понижения температуры вновь возобновляют свой рост.

К термостойким бактериям относятся микрококки, стрептококки, аэробные споровые и грамотрицательные палочки. Термофильные спорообразующие бактерии рода Bacillus могут вызвать плоскокислую порчу консервированных овощей (горошек, кукуруза). Термофильные микроорганизмы, быстро развивающиеся при температуре 328 К, могут привести к повышению кислотности молока и развитию пороков вкуса молочных продуктов. В сыром молоке обычно содержится незначительное количество термофильных бактерий, но вполне достаточное, чтобы в процессе длительного хранения молока при высокой температуре их количество значительно возросло. Одним из источников инфицирования молочной продукции термофильной микрофлорой являются танки после мойки горячей водой.

Регулирование температуры на пищевом предприятии - важное средство предотвращения роста вредной и патогенной микрофлоры. Хотя психрофильные бактерии, такие, как Pseudomonas,. Achromobacter и Flavobacterium, могут размножаться почти при температурах замерзания, интенсивность их роста в этом температурном интервале низка, а соответствующая обработка морозильных установок и холодильных камер может предотвратить рост этих микроорганизмов. Хранение при низкой температуре является обычным способом повышения стойкости пищевых продуктов. В этих условиях наличие бактерий, способных довольно хорошо развиваться при низкой температуре, будет отрицательно влиять на стойкость продуктов.

Мезофильные микроорганизмы поддаются контролю легче, чем психрофильные виды. Однако при нормальной комнатной температуре, обычной для большинства пищевых предприятий, эти микроорганизмы быстро растут и образуют слизи на инспекционных транспортерах и оборудовании, если не соблюдать жесткие санитарные требования.

Помимо температуры, к основным внешним факторам, определяющим эффективность борьбы с микробиальной обсемененностью, относятся влажность воздуха, величина pH и присутствие: подходящих питательных сред.

Образовательные организации зачастую становятся местом возникновения очага вирусных заболеваний, а особенности их функционирования способствуют распространению инфекций. Среди факторов, обусловливающих высокий риск распространения в образовательных организациях заболеваний, передающихся воздушно-капельным путем, назовем переуплотнение групп и классов, скученность в рекреациях, раздевалках, недостаточный уровень знания правил личной гигиены, что особенно касается учащихся младших классов и дошкольников.

Нередки ситуации, когда одного-двух детей с признаками заболевания достаточно, чтобы инфекция воздушно-капельным путем передалась другим воспитанникам в классе (группе). Именно поэтому в периоды эпидемического подъема особое внимание нужно уделять организации утреннего фильтра при приеме детей в детский сад (школу), чтобы не допустить обучающегося с признаками заболевания к пребыванию в коллективе. При выявлении заболевшего важно вовремя его изолировать.

Не менее значимым для предотвращения возникновения и распространения инфекций в период эпидемического подъема является осуществление дезинфекционных мероприятий в учебных помещениях и групповых. Помимо широко используемых химических методов дезинфекции, в настоящее время в образовательных организациях также применяется метод ультрафиолетового обеззараживания помещений. В статье пойдет речь именно о физическом методе дезинфекции.

При ультрафиолетовом обеззараживании помещений воздействие облучения на структуру микроорганизмов, находящихся в воздухе и на различных поверхностях, приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовое бактерицидное облучение воздушной среды помещений осуществляют с помощью ультрафиолетовых бактерицидных облучателей и установок, которые применяются с целью снижения уровня бактериальной обсемененности и создания условий для предотвращения распространения возбудителей инфекционных болезней.

Наша справка. Согласно п. 2.3 Р 3.5.1904-04 «Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях» ультрафиолетовые бактерицидные установки должны применяться в помещениях с повышенным риском распространения возбудителей инфекций: в лечебно-профилактических, дошкольных, школьных, производственных и общественных организациях и других помещениях с большим скоплением людей.

Использование ультрафиолетового оборудования, по данным Департамента образования г. Москвы, позволяет значительно снизить уровень микробной обсемененности воздуха в помещениях с повышенным риском распространения возбудителей инфекций в групповых, учебных и других помещениях с большим скоплением детей — столовых, актовых и спортивных залах. Практика применения ультрафиолетового оборудования в образовательных организациях в 2005-2010 гг. показала снижение уровня заболеваемости острыми респираторными вирусными инфекциями (ОРВИ) среди детей более чем на 30 %.

Ультрафиолетовые бактерицидные облучатели

Ультрафиолетовый бактерицидный облучатель (далее — бактерицидный облучатель) представляет собой электротехническое устройство, состоящее из ультрафиолетовой бактерицидной лампы или ламп, пускорегулирующего аппарата, отражательной арматуры, деталей для крепления ламп и присоединения к питающей сети, а также элементов для подавления электромагнитных помех в радиочастотном диапазоне. Бактерицидные облучатели подразделяют на три группы: открытые, закрытые и комбинированные.

У закрытых облучателей (рециркуляторов) бактерицидный поток от ламп, расположенных в небольшом замкнутом пространстве корпуса облучателя, не имеет выхода наружу. В этом случае обеззараживание воздуха осуществляется в процессе его прокачки через вентиляционные отверстия, имеющиеся на корпусе, с помощью вентилятора. Такие облучатели применяют для обеззараживания воздуха в присутствии людей .

У открытых облучателей прямой бактерицидный поток от ламп и отражателя (или без него) охватывает широкую зону в пространстве. Комбинированные облучатели снабжены двумя бактерицидными лампами, разделенными экраном таким образом, чтобы поток от одной лампы направлялся наружу в нижнюю зону помещения, а от другой — в верхнюю. Лампы могут включаться вместе и по отдельности. Открытые и комбинированные облучатели могут использоваться для обеззараживания помещения только в отсутствие людей или при кратковременном их пребывании в помещении .

В присутствии людей с ограничениями по времени эксплуатации используют метод непрямого облучения помещений . Оно осуществляется с помощью ламп, подвешенных на высоте 1,8-2,0 м от пола с рефлектором, обращенным кверху таким образом, чтобы поток прямого излучения попадал в верхнюю зону помещения. Нижняя зона помещения защищена от прямых лучей рефлектором лампы. Воздух, проходящий через верхнюю зону помещения, фактически подвергается прямому облучению. Отраженные от потолка и верхней части стен ультрафиолетовые лучи воздействуют на нижнюю зону помещения, в которой могут находиться люди. Наилучшая степень отражения достигается, если стены окрашены в белый цвет. И все же эффективность обеззараживания воздуха нижней зоны практически нулевая, т. к. интенсивность отраженной радиации в 20-30 раз меньше прямой.

Бактерицидные облучатели могут быть передвижными и стационарными . Последние обычно крепятся на стену. Передвижные облучатели являются оптимальным решением для учреждений, где дезинфекция проводится не одновременно во всех помещениях. В дошкольных образовательных организациях передвижной облучатель можно расположить, например, в месте складирования игрушек. В школах удобнее использовать стационарные рециркуляторы.

Основным недостатком ультрафиолетового обеззараживания воздуха и поверхностей является отсутствие пролонгированного эффекта. Достоинство же состоит в том, что при использовании такого метода исключается вредное воздействие на человека и животных, чего нельзя сказать о дезинфекции хлорсодержащими веществами. Кроме того, бактерицидные лампы, в отличие от кварцевых, при работе не образуют озон: стекло лампы отфильтровывает озонообразующую спектральную линию. Их применение безопасно для органов дыхания, а помещения с непрерывно работающими бактерицидными лампами в обязательном проветривании не нуждаются.

К сведению

В наиболее распространенных лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности, т. е. эффективности поглощения ультрафиолета молекулами ДНК.

Некоторые особенности использования бактерицидных облучателей в образовательных организациях

В первую очередь ультрафиолетовое облучение в образовательных организациях следует использовать для обеззараживания воздуха. Поверхности в помещениях детских садов и школ обеззараживают с помощью дезинфицирующих средств, но бактерицидный облучатель позволяет произвести их дополнительную обработку. При этом важно, чтобы обеззараживаемые поверхности были чистыми и не захламленными посторонними предметами. Особенной сферой применения бактерицидных облучателей в детских садах является обеззараживание игрушек. Дело в том, что некоторые виды игрушек (мягкие игрушки большого размера, игровые конструкции из разных видов материалов и др.) невозможно обработать химическими средствами, постирать или разобрать на части для дезинфекции отдельных элементов. В таком случае при проведении ультрафиолетового обеззараживания помещения крупные игрушки располагают на открытом пространстве, составные игрушки максимально разбирают и раскладывают части.

Правила работы с бактерицидным облучателем

1. Эксплуатация бактерицидных облучателей должна осуществляться в строгом соответствии с требованиями, указанными в паспорте и инструкции по эксплуатации.

2. К эксплуатации бактерицидных установок не допускается персонал, не прошедший необходимый инструктаж в установленном порядке, проведение которого следует задокументировать.

3. Облучатели закрытого типа (рециркуляторы) должны размещаться в помещении на стенах по ходу основных потоков воздуха, в частности вблизи отопительных приборов, на высоте не менее 1,5-2,0 м от пола. Место размещения рециркулятора должно быть доступно для обработки.

4. Еженедельно лампа бактерицидного облучателя со всех сторон протирается от пыли и жировых отложений стерильной марлевой салфеткой. Наличие пыли на лампе до 50 % снижает эффективность обеззараживания воздуха и поверхностей. Протирка от пыли должна проводиться только при отключенной от сети бактерицидной установке.

5. В норме бактерицидные облучатели закрытого типа не выделяют озон. Но при неисправности или завершении срока службы ламп в помещении может возникнуть запах озона. В этом случае нужно немедленно вывести людей из помещения и тщательно его проветрить до исчезновения запаха озона.

6. Все помещения с бактерицидными установками, действующими или только вводимыми, должны иметь акт их ввода в эксплуатацию и журнал их регистрации и контроля.

Журнал регистрации и контроля ультрафиолетовой бактерицидной установки

Согласно приложению 3 к Р 3.5.1904-04 журнал регистрации и контроля ультрафиолетовой бактерицидной установки является документом, подтверждающим ее работоспособность и безопасность эксплуатации. В нем должны быть зарегистрированы все бактерицидные установки, находящиеся в эксплуатации в помещениях учреждения, а также результаты контрольных проверок состояния бактерицидного облучателя. Журнал состоит из двух частей. Примеры оформления каждой из них в соответствии с приложением 3 к Р 3.5.1904-04 представлены ниже.

Экспозиция

В отличие от кварцевых ламп или открытых облучателей, время работы закрытых облучателей, используемых в присутствии людей, не ограничивается. Бактерицидные рециркуляторы с установленными в них лампами-облучателями могут безопасно работать по 8 часов в день. Однако на практике облучатели включают во время проведения дезинфекции поверхностей и предметов или сразу после нее для достижения максимального эффекта обеззараживания на время экспозиции.

Наш словарь

Объемная бактерицидная доза — это объемная плотность бактерицидной энергии излучения (отношение энергии бактерицидного излучения к воздушному объему облучаемой среды).

Для помещений детских игровых комнат, школьных классов, бытовых помещений общественных зданий с большим скоплением людей при длительном пребывании значение объемной бактерицидной дозы, обеспечивающее достижение эффективности обеззараживания до 90, 95, 99,9 % при облучении микроорганизмов излучением с длиной волны 254 нм от ртутной лампы низкого давления, составляет 130 Дж/м 3 .

Для помещений образовательных организаций показатель микробной обсемененности в воздухе , т. е. общее содержание микроорганизмов в 1 м 3 воздушной среды, не регламентируется. Однако нормируется значение бактерицидной (антимикробной) эффективности , отражающее уровень снижения микробной обсемененности воздушной среды или на поверхности в результате воздействия ультрафиолетового излучения, выраженный в процентах как отношение числа погибших микроорганизмов к их начальному числу до облучения. Для образовательных организаций значение бактерицидной эффективности должно составлять не менее 90 %.

В заключение еще раз обратим внимание на то, что использование бактерицидных облучателей закрытого типа в детских садах и школах значительно снижает риск заболеваний ОРВИ и другими инфекциями среди взрослых и детей, что особенно актуально в периоды эпидемических подъемов. Однако бактерицидной эффективности без ущерба для безопасности детей и педагогического персонала можно достичь только при неукоснительном соблюдении правил эксплуатации бактерицидных установок.

Методический материал для медсестры процедурного кабинета. (МОЯ ШПАРГАЛКА)

Роль медицинской сестры в процессе лечения пациента, особенно в стационаре, трудно переоценить. Выполнение назначений врача, уход за тяжелобольными, проведение многих, иногда довольно сложных, манипуляций - все это является прямой обязанностью среднего медицинского персонала. Медицинская сестра также участвует в обследовании пациента, подготовке его к различным оперативным вмешательствам, работает в операционной в качестве анестезиста или операционной сестры, наблюдает за пациентом в отделениях реанимации и интенсивной терапии. Все это предъявляет высокие требования не только к знаниям и практическим навыкам медицинской сестры, но и к ее моральному облику, умению вести себя в коллективе , при общении с пациентами и их родственниками.

Медицинская сестра должна неукоснительно выполнять указание врача и точно соблюдать не только дозировку лекарства и длительность процедур, но и их последовательность. Назначая время или периодичность введения препаратов, врач учитывает длительность их действия, возможность сочетания с другими лекарствами. Поэтому небрежность или ошибка могут оказаться чрезвычайно опасными для пациента и привести к необратимым последствиям.

Современные лечебные учреждения оснащены новой диагностической и лечебной аппаратурой. Медицинские сестры должны не только знать, для чего служит тот или иной прибор, но и уметь им пользоваться, особенно, если он установлен в палате. При выполнении сложных манипуляций медицинская сестра, если она не чувствует себя достаточно подготовленной для этого или сомневается в чем-то, не должна стесняться просить помощи и совета у более опытных коллег. Точно также медицинская сестра, хорошо владеющая техникой, той или иной манипуляцией, обязана помогать осваивать эту технику своим менее опытным товарищам. Самоуверенность, зазнайство и высокомерие недопустимы, когда речь идет о здоровье и жизни человека Обязательным качеством медицинской сестры должно быть стремление к постоянному повышению своей квалификации, углублению знаний, приобретению новых навыков. Этому должна способствовать общая атмосфера лечебного учреждения, играющая важную роль в формировании высококвалифицированного и ответственного работника, выработке у него высоких моральных качеств, гуманизма и умение всем своим поведением способствовать возвращению здоровья и трудоспособности больному человеку.

Инфекционный контроль - это система эффективных профилактических и противоэпидемических мероприятий, направленных на предупреждение возникновения и распространения госпитальных инфекций, основанная на результатах эпидемической диагностики.

Целью инфекционного контроля являются снижение заболеваемости, летальности и экономического ущерба от госпитальных инфекций. Госпитальная инфекция - это любые инфекционные заболевания, проявившиеся в условиях стационара. К госпитальным инфекциям также относятся случаи инфицирования медицинских работников ЛПУ, возникшие в результате их профессиональной деятельности .

Для предупреждения внутрибольничной инфекции медицинская сестра обязана:

· раздельно хранить верхнюю одежду и спецодежду,

· не выходить в спецодежде за пределы территории больницы,

· не носить спецодежду в неслужебное время.

Работа в процедурном кабинете начинается с текущей уборки.

Процедурная медсестра снимает с рук украшения (часы, браслеты и кольца). Волосы убирает под шапочку, одевает маску.

Текущая уборка процедурного кабинета проводится не менее 2-х раз в сутки, при необходимости чаще: утром перед началом рабочего дня и в конце рабочей смены. Влажную уборку всегда необходимо сочетать с дезинфекцией и бактерицидным облучением помещения. Для дезинфекции могут быть использованы любые дезсредства разрещённые к применению и имеющиеся в наличие, согласно методических инструкций к раствору.

Медсестра или санитарка для уборки надевает халат и перчатки. В специальную ёмкость наливает дезраствор и закладывается чистая ветошь для обработки поверхностей. Протираются все поверхности в строгой последовательности - стол для стерильного материала, шкафы для стерильных растворов, оборудование, манипуляционные столы, стулья, кушетки для больных, стены на уровне вытянутой руки (1.5м) от окна к двери.

Для уборки используется специально выделенный уборочный инвентарь , имеющий чёткую маркировку с указанием помещения, вида уборочных работ и специально выделенное место хранения.

Гигиеническую обработку рук кожным антисептиком следует проводить в следующих случаях: перед непосредственным контактом с пациентом

Перед надеванием стерильных перчаток и после снятия перчаток при постановке центрального внутрисосудистого катетера или внутривенных инъекций и др. процедур, связанных с целостностью кожных покровов.

Гигиеническую обработку рук кожным антисептиком (без их предварительного мытья) проводят путём втирания его в кожу кистей рук в количестве, рекомендуемом инструкцией по применению, обращая особое внимание на обработку кончиков пальцев, кожу вокруг ногтей, между пальцами. Непременным условием эффективного обеззараживания рук является поддержание их во влажном состоянии в течение рекомендуемого времени обработки.

Обратите внимание, чем моете руки:

Перед тем как использовать средство в дозаторе, обращайте внимание если в инструкции добавлено активное вещество с моющим эффектом это значит руки мылом перед использованием раствора мыть не нужно, после сушим руки одноразовым полотенцем надеваем ст. перчатки;

Если на флаконе написано, что жидкое мыло с антисептическим эффектом, то после мытья руки сушите одноразовым полотенцем и надеваете ст. перчатки;

Если написано, что кожный антисептик, значит моем руки с мылом в течении времени, указанного в методичке по использованию мыла

М/с моет руки под проточной водой с мылом не менее 2 мин. (время намыливания рук указано в методичках на конкретное название используемого средства). Сушит руки стерильной салфеткой или одноразовым полотенцем и этим же полотенцем или салфеткой, которым вытирали руки закрываем кран с водой, а если нет стерильной салфетки, то для накрытия большого стерильного стола предусмотрено 10грамм 70гр. спирта, а мини стола 3,0 спирта льём на руки и высушиваем руки крепко втирая спирт в ладони, одеваем стерильные перчатки.

Накрытие стерильного стола: Обязательно на биксе должна быть бирка, на которой написано что находится в биксе и в каком количестве, т. к. после стерилизации буквы написанного часто стираются нужно постоянно их обновлять, а также должна быть указана дата и время стерилизации и дата и время вскрытия бикса. Если набор простерилизован в крафт бумаге, то дату и время вскрытия пишется на бумаге, крафт-бумага используется для стерилизации однократно.

Перед извлечением простерилизованных материалов инструментов (до вскрытия биксов):

Визуально оценивают плотность закрытия крышки стерилизационной коробки или целостность стерилизационной упаковки однократного применения;

Проверяют цвет индикаторных меток химических индикаторов, в том числе на стерилизационных упаковочных материалах;

Проверяют дату стерилизации;

На бирке бикса, упаковочном пакете ставят дату, время вскрытия и подпись вскрывавшего.

В журнале учёта стерилизации обязательно пишется № бикса, наличие изделий медназначения, время вскрытия бикса (пакета) и приклеивается индикатор качества стерилизации, взятый изнутри вскрытого бикса (пакета).

Перед подготовкой стерильных министолов медсестра обрабатывает (гигиеническая обработка) руки спиртосодержащим кожным антисептиком по технологии,

надевает стерильные перчатки. Накрытие большого инструментального стола (после обработки рук м/с одевает стерильный халат, стерильные перчатки) достаёт пинцетом из бикса две стерильные простыни, каждая из которых сложена вдвое, раскладывают на левую и правую половины стола местами сгиба - к стене. Простыни располагают внахлёст таким образом, чтобы по центру стола края одной простыни заходили на другую простыню не менее чем на 10 см., а края простыней со всех сторон стола свисали примерно на 15см. Поверх этих простыней выстилают третью простыню в развёрнутом виде так, чтобы её края свисали не менее чем на 25см. Стол с разложенными на нём инструментами сверху накрывают стерильной простынёй, сложенной вдвое по длине простынного полотна, или двумя простынями в развёрнутом виде. Большой стерильный стол накрывается на 6 часов.

В процедурных кабинетах мини стерильный стол накрывается на 2 часа.

Первый лоток (министол) со стерильным материалом

Второй лоток (министол) для временного хранения шприцов

На стерильном столе или мини лотках иметь маркировку дата и время накрытия стерильного стола.

После изучения листа назначения м/с, готовит ампулы с лекарственным средством, упаковку с перчатками, шприцы в упаковке. Моет руки, из пакетика вытряхивает шприц на лоток, для временного хранения стерильного материала, обрабатывает руки антисептиком, одевает стерильные перчатки, на стерильный ватный тампон льётся спирт протирается шейка ампулы, и флаконы с лекарственным средством, ампулы подпиливаем и сухим стерильным ватным тампоном, отламываем подпиленный кончик ампулы.

Обрабатываем руки антисептиком

Правой рукой взять иглу за пластмассовый колпачок и вращательным движением муфту иглы насадить на шприц и хорошо притереть. Собранный шприц при необходимости положить на стерильную пелёнку;

Ампулу/флакон взять в левую руку, правой ввести иглу надетую на шприц набирается нужное количество препарата, по мере надобности наклоняя их;

Удалить пузырьки воздуха из шприца, повернув шприц вертикально иглой вверх, надавливая на поршень, постепенно выдавить воздух из шприца;

Недопустимо прижимать стерильные ватные шарики к горлышку флакона со спиртом или отжимать руками смоченный спиртом шарик в общую ёмкость со спиртом, заранее смачивать спиртом большую партию ватных шариков и хранить их в течение длительного срока;

В ходе работы с пациентом строго выполняются правила профессиональной безопасности.

Инъекции выполняются в стерильных резиновых перчатках, со сменой их после каждого пациента;

Крышки флаконов, ампулы перед вскрытием обрабатываются стерильным тампоном, смоченным 70гр. этиловым спиртом;

Кожа в месте инъекции последовательно обрабатывается двумя стерильными ватными тампонами с 70гр. этиловым спиртом: вначале большую зону, затем-непосредственно

место инъекции;

После инъекции к раневой поверхности прикладывается новый стерильный тампон;

На каждую инъекцию используют 2 иглы (для разведения и набора инъекционного раствора и для инъекции);

При проведении парентеральных манипуляций в палате, включая постановку систем используется передвижной инструментальный столик, на верхней полке которого собирается стерильный мини лоток, на котором находится шприц с набранным лекарством между двумя слоями стерильной пелёнки, а также стерильные марлевые салфетки и ватные шарики, для инъекций на конкретного больного. Там же ставится флакон с 70гр. спиртом и пакет со стерильными перчатками. На нижней полке находится ёмкость для использованного материала.

Медсестра заряженную систему относит в палату вместе с инструментальным столиком, затем моет руки в процедурном кабинете. В палате больному завязывает жгут на руку, обрабатывает руки антисептиком (в это время больной работает кулаком, чтобы лучше было видно вену, для инъекции). Надевает стерильные перчатки, смачивает стерильный ватный тампон антисептиком, протирает место инъекции по схеме дважды, делает в/в инъекцию, закрепляет систему, накрывает иглу стерильной марлевой салфеткой.

После окончания капельницы иглу вынимают, прикладывают ватный тампон со спиртом на место инъекции. Систему вынимают из бутылки и аккуратно укладывают в лоток для использованного материала не отсоединяя иглу от системы. Весь использованный материал на инструментальном столике возвращается в процедурный кабинет. Где м/с в перчатках берёт зажим и аккуратно отсоединяет иглу от системы и закладывает её в непрокалываемую ёмкость для дезинфекции игл, остатки лекарственных средств из системы сливает в ёмкость, для биологической жидкости. Затем систему закладывает в ёмкость для дезинфекции систем, шприц промывается в 1 ёмкости для промывания шприцов и укладывается во 2 ёмкость для дезинфекции шприцов.

Недопустимо возвращать неиспользованный стерильный материал в общую упаковку;

9. Вымытый холодильник вытереть досуха тканью.

Обработка бактерицидных ламп во время генеральной уборки

1. Корпус бактерицидной лампы обрабатывается тем же дез. средством, каким обрабатываю поверхности, а стеклянную часть обрабатывают 95гр. спиртом из расчёта 5гр. на одну большую лампу, на маленькие 2,5гр.

2. Один раз в месяц каркас лампы обрабатывают 3% раствором перекиси водорода на 1 литр 5гр. моющего средства.

3. Во время текущей уборки каркас лампы протирается дез. средством, которым проводится обработка поверхностей, а стеклянная часть лампы протирается сухой стерильной салфеткой.

При проведении генеральной уборки используется 3 ветоши (1-я для мыльно-содового раствора, 2-ой наносится дезсредство, 3-ей (стерильной) смывается дезсредство после экспозиции), Ген уборка проводится по графику, утверждённому зав. отделением. Ответственным лицом за проведение генеральной уборки является старшая медицинская сестра отделения. В тетради ген. уборок на первом листе обязательно должно быть написано метраж обрабатываемой поверхности, требуемое количество дезинфицирующего средства, также при текущей уборке и примерное время начала генеральной уборки, чтобы не было накладки с журналом учёта кварцевания кабинета после проведённой ген. уборки.

Теперь расчёт дезсредств в журнале проведения генеральных уборок.

У старшей м/с должны быть расчёты на дезсредства для уборки всех помещений отделения или кабинетов поликлиники. Так как уборка всех помещений кроме служебных кабинетов (ординаторские, каб. старш. м/с и др.) проводятся с применением дезсредств. Поэтому нужно сделать папку, в которой будут храниться методички и сертификаты на дезсредства, используемые в отделении, а также расчёты на все помещения. У ст. м/с должны быть данные о потребности дезсредств на 1,3,6мес.

Чтобы она в любой момент могла их представить главной м/с для закупа на будущее, зная свой остаток. Также не забывать про дезинфекцию отработанного материала и изделий медназначения и пр., и предстерилизационную обработку инструментария

Для расчётов дезсредств нужно обязательно знать площадь всех помещений.

1. S - площадь

2. L – длина кабинета

3. H – высота кабинета

4. D – ширина кабинета

Например

S – пола 6х4=24м. х 2 (если проводится помывка потолка)

L – 6метров х 2 (2стены)

D – 4 метра х 2(2стены)

H – 2.5метра для ген. уборки на текущую уборку берётся высота 1.5м.

Узнаём площадь всех поверхностей стен и пола

1) Стены по длине 6 х 2.5 х 2= 30м2

2) Стены по ширине с учётом окон и дверей (площадь окон можно в конце вычесть) 4 х 2.5 х2 = 20м2

3) Пол 6х4+ потолок 6х4 = 48м2

S=30+20+48 =98м2

Не забывайте, что во время ген. уборок моются холодильники, шкафы, столы, стулья, кушетки и прочая мебель.

Все растворы дезсредства на протирание берутся 100мл. на 1 кв. м.