Что является источником энергии для фотосинтеза. Описание световой фазы

Все о печах и дымоходах

Фотосинтез – это совокупность процессов синтеза органических соединений из неорганических благодаря преобразованию световой энергии в энергию химических связей. К фототрофным организмам принадлежат зеленые растения, некоторые прокариоты – цианобактерии, пурпурные и зеленые серобактерии, растительные жгутиковые.

Исследования процесса фотосинтеза начались во второй половине XVIII века. Важное открытие сделал выдающийся русский ученый К. А. Тимирязев, который обосновал учение о космической роли зеленых растений. Растения поглощают солнечные лучи и превращают световую энергию в энергию химических связей синтезированных ими органических соединений. Тем самым они обеспечивают сохранение и развитие жизни на Земле. Ученый также теоретически обосновал и экспериментально доказал роль хлорофилла в поглощении света в процессе фотосинтеза.

Хлорофиллы являются основными из фотосинтезирующих пигментов. По структуре они похожи на гем гемоглобина, но вместо железа содержат магний. Содержание железа необходимо для обеспечения синтеза молекул хлорофилла. Существует несколько хлорофиллов, которые отличаются своим химическим строением. Обязательным для всех фототрофов является хлорофилл а . Хлорофилл b встречается у зеленых растений, хлорофилл с – у диатомовых и бурых водорослей. Хлорофилл d характерен для красных водорослей.

Зеленые и пурпурные фотосинтезирующие бактерии имеют особые бактериохлорофиллы . Фотосинтез бактерий имеет много общего с фотосинтезом растений. Отличается он тем, что у бактерий донором водорода является сероводород, а у растений – вода. У зеленых и пурпурных бактерий нет фотосистемы II. Бактериальный фотосинтез не сопровождается выделением кислорода. Суммарное уравнение бактериального фотосинтеза:

6С0 2 + 12H 2 S → C 6 H 12 O 6 + 12S + 6Н 2 0.

В основе фотосинтеза лежит окислительно-восстановительный процесс. Он связан с перенесением электронов от соединений-поставщиков электронов-доноров к соединениям, которые их воспринимают – акцепторам. Световая энергия превращается в энергию синтезированных органических соединений (углеводов).

На мембранах хлоропластов есть особые структуры – реакционные центры , которые содержат хлорофилла. У зеленых растений и цианобактерий различают две фотосистемы первую (I) и вторую (II) , которые имеют разные реакционные центры и связаны между собой через систему перенесения электронов.

Две фазы фотосинтеза

Состоит процесс фотосинтеза из двух фаз: световой и темновой.

Происходит лишь при наличии света на внутренних мембранах митохондрий в мембранах особых структур – тилакоидов . Фотосинтезирующие пигменты улавливают кванты света (фотоны). Это приводит к «возбуждению» одного из электронов молекулы хлорофилла. С помощью молекул-переносчиков электрон перемещается на внешнюю поверхность мембраны тилакоидов, приобретая определенную потенциальную энергию.

Этот электрон в фотосистеме I может возвратиться на свой энергетический уровень и восстанавливать ее. Может также передаваться НАДФ (никотинамидадениндинуклеотидфосфат). Взаимодействуя с ионами водорода, электроны восстанавливают это соединение. Восстановленный НАДФ (НАДФ Н) поставляет водород для восстановления атмосферного С0 2 до глюкозы.

Подобные процессы происходят в фотосистеме II . Возбужденные электроны могут передаваться фотосистеме I и восстанавливать ее. Восстановление фотосистемы II происходит за счет электронов, которые поставляют молекулы воды. Молекулы воды расщепляются (фотолиз воды ) на протоны водорода и молекулярный кислород, который выделяется в атмосферу. Электроны используются для восстановления фотосистемы II. Уравнение фотолиза воды:

2Н 2 0 → 4Н + + 0 2 + 2е.

При возвращении электронов из внешней поверхности мембраны тилакоидов на предыдущий энергетический уровень выделяется энергия. Она запасается в виде химических связей молекул АТФ, которые синтезируются во время реакций в обеих фотосистемах. Процесс синтеза АТФ с АДФ и фосфорной кислотой называется фотофосфорилированием . Некоторая часть энергии используется для испарения воды.

Во время световой фазы фотосинтеза образуются богатые энергией соединения: АТФ и НАДФ Н. При распаде (фотолизе) молекулы воды в атмосферу выделяется молекулярный кислород.

Реакции протекают во внутренней среде хлоропластов. Могут происходить как при наличии света, так и без него. Синтезируются органические вещества (С0 2 восстанавливается до глюкозы) с использованием энергии, которая образовалась в световой фазе.

Процесс восстановления углекислого газа является циклическим и называется циклом Кальвина . Назван в честь американского исследователя М. Кальвина, который открыл этот циклический процесс.

Начинается цикл с реакции атмосферного углекислого газа с рибулезобифосфатом. Катализирует процесс фермент карбоксилаза . Рибулезобифосфат – это пятиуглеродный сахар, соединенный с двумя остатками фосфорной кислоты. Происходит целый ряд химических преобразований, каждое из которых катализирует свой специфический фермент. Как конечный продукт фотосинтеза образуется глюкоза , а также восстанавливается рибулезобифосфат.

Суммарное уравнение процесса фотосинтеза:

6С0 2 + 6Н 2 0 → С 6 Н 12 О 6 + 60 2

Благодаря процессу фотосинтеза поглощается световая энергия Солнца и происходит преобразование ее в энергию химических связей синтезированных углеводов. По цепям питания энергия передается гетеротрофным организмам. В процессе фотосинтеза поглощается углекислый газ и выделяется кислород. Весь атмосферный кислород имеет фотосинтетическое происхождение. Ежегодно выделяется свыше 200 млрд. тонн свободного кислорода. Кислород защищает жизнь на Земле от ультрафиолетового излучения, создавая озоновый экран атмосферы.

Процесс фотосинтеза малоэффективен, так как в синтезированное органическое вещество переводится лишь 1-2 % солнечной энергии. Связано это с тем, что растения недостаточно поглощают свет, часть его поглощается атмосферой и т. п. Большая часть солнечного света отражается от поверхности Земли назад в космос.

Фотосинтезом называют процесс, результатом которого является образование и выделение кислорода клетками растений и некоторыми видами бактерий.

Основное понятие

Фотосинтез - это не что иное, как цепочка уникальных физико-химических реакций. В чем же он заключается? Зеленые растения, а также некоторые бактерии поглощают солнечные лучи и преобразовывают их в электромагнитную энергию. Конечным результатом фотосинтеза является энергия химических связей разнообразных органических соединений.

В растении, которое осветили солнечные лучи, в определенной последовательности происходят окислительно-восстановительные реакции. Вода и водород, представляющие собой доноров-восстановителей, перемещаются в виде электронов к акцептору-окислителю (углекислому газу и ацетату). В результате образуются восстановленные соединения углеводов, а также кислород, который и выделяют растения.

История изучения фотосинтеза

На протяжении многих тысячелетий человек был убежден в том, что питание растения происходит по его корневой системе через почву. В начале шестнадцатого века голландским натуралистом Яном Ван Гельмонтом был проведен эксперимент с выращиванием растения в горшке. После взвешивания почвы до посадки и после того как растение достигло определенных размеров, им был сделан вывод о том, что все представители флоры получают питательные вещества в основном из воды. Этой теории придерживались ученые в течение двух последующих столетий.

Неожиданное для всех, но правильное предположение о питании растений было сделано в 1771 г. химиком из Англии Джозефом Пристли. Поставленные им опыты убедительно доказали, что растения способны очистить воздух, который ранее был не пригоден для дыхания человека. Несколько позже был сделан вывод о том, данные процессы невозможны без участия солнечного света. Ученые выяснили, что зеленые листочки растений не просто превращают полученный ими углекислый газ в кислород. Без этого процесса невозможна их жизнь. В совокупности с водой и минеральными солями углекислый газ служит пищей растениям. В этом заключено основное значение фотосинтеза для всех представителей флоры.

Роль кислорода для жизни на Земле

Опыты, которые были проведены английским химиком Пристли, помогли человечеству объяснить, почему воздух на нашей планете остается пригодным для дыхания. Ведь жизнь поддерживается, несмотря на существование огромного количества живых организмов и горение бесчисленного количества огней.

Возникновение жизни на Земле миллиарды лет назад было попросту невозможно. Атмосфера нашей планеты не содержала в себе свободного кислорода. Все изменилось с появлением растений. Весь находящийся сегодня в атмосфере кислород - это результат фотосинтеза, происходящего в зеленых листьях. Данный процесс изменил облик Земли и дал толчок к развитию жизни. Это бесценное значение фотосинтеза было до конца осознано человечеством лишь в конце 18 века.

Не является преувеличением утверждение, что само существование людей на нашей планете зависит от того, каково состояние растительного мира. Значение фотосинтеза заключено в его ведущей роли для протекания различных биосферных процессов. В глобальных масштабах эта удивительная физико-химическая реакция приводит к образованию органических веществ из неорганических.

Классификация процессов фотосинтеза

В зеленом листе происходит три важных реакции. Они и представляют собой фотосинтез. Таблица, в которую заносят данные реакции, применяется при изучении биологии. В ее строки вносят:

Фотосинтез;
- газообмен;
- испарение воды.

Те физико-химические реакции, которые происходят в растении при свете дня, позволяют зеленым листикам выделять двуокись углерода и кислород. В темное время суток - только первый из этих двух компонентов.

Синтез хлорофилла в некоторых растениях происходит даже при слабом и рассеянном освещении.

Основные этапы

Различают две фазы фотосинтеза, которые тесно связаны между собой. На первом этапе энергия лучей света преобразуется в высокоэнергетические соединения АТФ и универсальные восстановители НАДФН. Эти два элемента являются первичными продуктами фотосинтеза.

На втором (темновом) этапе полученные АТФ и НАДФН используются для фиксации углекислоты вплоть до ее восстановления в углеводы. Две фазы фотосинтеза имеют различия не только во времени. Они происходят и в различном пространстве. Тому, кто изучает по биологии тему "фотосинтез", таблица с точным указанием характеристик двух фаз поможет в более точном понимании процесса.

Механизм выработки кислорода

После поглощения растениями углекислого газа в них происходит синтез питательных веществ. Данный процесс осуществляется в зеленых пигментах, называемых хлорофиллами, под воздействием солнечных лучей. Основными составляющими этой удивительной реакции являются:

Свет;
- хлоропласты;
- вода;
- углекислый газ;
- температура.

Последовательность фотосинтеза

Выработка растениями кислорода осуществляется поэтапно. Основными стадиями фотосинтеза являются следующие:

Поглощение света хлорофиллами;
- разделение хлоропластами (внутриклеточными органоидами зеленого пигмента) полученной из почвы воды на кислород и водород;
- перемещение одной части кислорода в атмосферу, а другой - для осуществления дыхательного процесса растениями;
- образование молекул сахара в белковых гранулах (пиреноидах) растений;
- производство крахмалов, витаминов, жиров и т.д. в результате смешивания сахара с азотом.

Несмотря на то, что для осуществления фотосинтеза необходим солнечный свет, данная реакция способна протекать и при искусственном освещении.

Роль растительного мира для Земли

Основные процессы, происходящие в зеленом листе, уже достаточно полно изучила наука биология. Значение фотосинтеза для биосферы огромно. Это единственная реакция, приводящая к росту количества свободной энергии.

В процессе фотосинтеза каждый год происходит образование ста пятидесяти миллиардов тонн вещества органического типа. Кроме того, за указанный период растениями выделяется практически 200 млн. тонн кислорода. В связи с этим можно утверждать, что роль фотосинтеза огромна для всего человечества, так как данный процесс служит основным источником энергии на Земле.

В процессе уникальной физико-химической реакции происходит круговорот углерода, кислорода, а также многих других элементов. Из этого вытекает еще одно немаловажное значение фотосинтеза в природе. Данной реакцией поддерживается определенный состав атмосферы, при котором возможна жизнь на Земле.

Процесс, происходящий в растениях, ограничивает количество углекислого газа, не позволяя ему скапливаться в увеличенных концентрациях. Это также немаловажное значение фотосинтеза. На Земле благодаря зеленым растениям не создается так называемого парникового эффекта. Флора надежно защищает нашу планету от перегрева.

Растительный мир как основа питания

Немаловажна роль фотосинтеза для лесного и сельского хозяйства. Растительный мир является питательной базой для всех гетеротрофных организмов. Однако значение фотосинтеза кроется не только в поглощении зелеными листьями углекислого газа и получения такого готового продукта уникальной реакции, как сахар. Растения способны преобразовывать азотистые и серные соединения в вещества, из которых слагаются их тела.

Как же это происходит? Каково значение фотосинтеза в жизни растений? Данный процесс осуществляется посредством получения растением ионов нитратов. Эти элементы находятся в почвенной воде. В растение они попадают благодаря корневой системе. Клеточки зеленого организма перерабатывают ионы нитратов в аминокислоты, из которых слагаются белковые цепочки. В процессе фотосинтеза образуются и компоненты жиров. Они для растений являются важными запасными веществами. Так, в семенах многих плодов находится питательное масло. Этот продукт важен и для человека, так как находит применение в пищевой и сельскохозяйственной промышленности.

Роль фотосинтеза в получении урожая

В мировой практике работы сельскохозяйственных предприятий широко используются результаты изучения основных закономерностей развития и роста растений. Как известно, основой формирования урожая является фотосинтез. Его интенсивность, в свою очередь, зависит от водного режима культур, а также от их минерального питания. Каким же образом человек добивается увеличения плотности посевов и размеров листьев для того, чтобы растение максимально использовало энергию Солнца и забирало углекислый газ из атмосферы? Для этого оптимизируются условия минерального питания и водоснабжения сельскохозяйственных культур.

Научно доказано, что урожайность зависит от площади зеленых листьев, а также от интенсивности и длительности протекающих в них процессов. Но в то же время увеличение плотности посевов приводит к затенению листьев. К ним не может пробиться солнечный свет, и из-за ухудшения вентиляции воздушных масс в малых объемах поступает углекислый газ. В итоге происходит снижение активности процесса фотосинтеза и уменьшается продуктивность растений.

Роль фотосинтеза для биосферы

По самым приблизительным подсчетам, только автотрофные растения, обитающие в водах Мирового океана, ежегодно превращают от 20 до 155 млрд. тонн углерода в органическое вещество. И это при том, что энергия солнечных лучей используется ими лишь на 0,11%. Что касается наземных растений, то они ежегодно поглощают от 16 до 24 млрд. тонн углерода. Все эти данные убедительно говорят о том, насколько велико значение фотосинтеза в природе. Только в результате данной реакции атмосфера восполняется необходимым для жизни молекулярным кислородом, который необходим для горения, дыхания и разнообразной производственной деятельности. Некоторые ученые полагают, что в случае повышения содержания углекислого газа в атмосфере происходит увеличение скорости фотосинтеза. При этом атмосфера пополняется недостающим кислородом.

Космическая роль фотосинтеза

Зеленые растения являются посредниками между нашей планетой и Солнцем. Они улавливают энергию небесного светила и обеспечивают возможность существования жизни на нашей планете.

Фотосинтез представляет собой процесс, о котором можно говорить в космических масштабах, так как он в свое время способствовал преображению образа нашей планеты. Благодаря реакции, проходящей в зеленых листьях, энергия солнечных лучей не рассеивается в пространстве. Она переходит в химическую энергию вновь образованных органических веществ.

Человеческому обществу продукты фотосинтеза нужны не только для пищи, но и для осуществления хозяйственной деятельности.

Однако человечеству важны не только те лучи солнца, которые падают на нашу Землю в настоящее время. Крайне необходимы для жизни и осуществления производственной деятельности те продукты фотосинтеза, которые были получены миллионы лет назад. Они находятся в недрах планеты в виде пластов каменного угля, горючего газа и нефти, торфяных месторождений.

Фотосинтез - процесс синтеза органических веществ за счет энергии света. Организмы, которые способны из неорганических соединений синтезировать органические вещества, называют автотрофными . Фотосинтез свойственен только клеткам автотрофных организмов. Гетеротрофные организмы не способны синтезировать органические вещества из неорганических соединений.
Клетки зеленых растений и некоторых бактерий имеют специальные структуры и комплексы химических веществ, которые позволяют им улавливать энергию солнечного света.

Роль хлоропластов в фотосинтезе

В клетках растений имеются микроскопические образования - хлоропласты. Это органоиды, в которых происходит поглощение энергии и света и превращение ее в энергию АТФ и иных молекул - носителей энергии. В гранах хлоропластов содержится хлорофилл - сложное органическое вещество. Хлорофилл улавливает энергию света для использования ее в процессах биосинтеза глюкозы и других органических веществ. Ферменты, необходимые для синтеза глюкозы, расположены также в хлоропластах.

Световая фаза фотосинтеза

Квант красного света, поглощенный хлорофиллом, переводит электрон в возбужденное состояние. Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Возбужденный светом электрон можно сравнить с камнем, поднятым на высоту, который также приобретает потенциальную энергию. Он теряет ее, падая с высоты. Возбужденный электрон, как по ступеням, перемещается по цепи сложных органических соединений, встроенных в хлоропласт. Перемещаясь с одной ступени на другую, электрон теряет энергию, которая используется для синтеза АТФ. Растративший энергию электрон возвращается к хлорофиллу. Новая порция световой энергии вновь возбуждает электрон хлорофилла. Он снова проходит по тому же пути, расходуя энергию на образования молекул АТФ.
Ионы водорода и электроны, необходимые для восстановления молекул-носителей энергии, образуются при расщеплении молекул воды. Расщепление молекул воды в хлоропластах осуществляется специальным белком под воздействием света. Называется этот процесс фотолизом воды .
Таким образом, энергия солнечного света непосредственно используется растительной клеткой для:
1. возбуждения электронов хлорофилла, энергия которых далее расходуется на образование АТФ и других молекул-носителей энергии;
2. фотолиза воды, поставляющего ионы водорода и электроны в световую фазу фотосинтеза.
При этом выделяется кислород как побочный продукт реакций фотолиза. Этап, в течение которого за счет энергии света образуются богатые энергией соединения - АТФ и молекулы-носители энергии, называют световой фазой фотосинтеза .

Темновая фаза фотосинтеза

В хлоропластах есть пятиуглеродные сахара, один из которых рибулозодифосфат , является акцептором углекислого газа. Особый фермент связывает пятиуглеродный сахар с углекислым газом воздуха. При этом образуется соединения, которые ща счет энергии АТФ и иных молекул-носителей энергии восстанавливаются до шестиуглеродной молекулы глюкозы. Таким образом, энергия света, преобразованная в течение световой фазы в энергию АТФ и иных молекул-носителей энергии, используется для синтеза глюкозы. Эти процессы могут идти в темноте.
Из растительных клеток удалось выделить хлоропласты, которые в пробирке под действием света осуществляли фотосинтез - образовывали новые молекулы глюкозы, при этом поглощали углекислый газ. Если прекращали освещать хлоропласты, то приостанавливался и синтез глюкозы. Однако если к хлоропластам добавляли АТФ и восстановленные молекулы-носители энергии, то синтез глюкозы возобновлялся и мог идти в темноте. Это означает, что свет действительно нужен только для синтеза АТФ и зарядки молекул-носителей энергии. Поглощение углекислого газа и образование глюкозы в растениях называют темновой фазой фотосинтеза , поскольку она может идти в темноте.
Интенсивное освещение, повышенное содержание углекислого газа в воздухе приводят к повышению активности фотосинтеза.

Фотосинтез является очень сложным биологическим процессом. Его изучает наука биология на протяжении многих лет, но, как показывает история изучения фотосинтеза, некоторые этапы до сих пор непонятны. В научных справочниках последовательное описание этого процесса занимает несколько страниц. Цель этой статьи - описать такое явление, как фотосинтез, кратко и понятно для детей, в виде схем и объяснения.

Научное определение

Для начала важно узнать, что такое фотосинтез. В биологии определение звучит так: это процесс образования органических веществ (пищи) из неорганических (из углекислого газа и воды) в хлоропластах с помощью энергии света.

Чтобы понять это определение, можно представить совершенную фабрику - это любое зеленое растение, которое является фотосинтетиком. «Топливом» для этой фабрики служит солнечный свет, растения используют воду, углекислый газ и минералы , чтобы производить пищу почти для всех форм жизни на земле. Эта «фабрика» совершенная, потому что она, в отличие от других заводов, не приносит вред, а, наоборот, по ходу производства выделяет в атмосферу кислород и поглощает углекислый газ. Как видно, для фотосинтеза необходимы определенные условия.

Этот уникальный процесс можно представить в виде формулы или уравнения:

солнце +вода+углекислый газ = глюкоза+вода+кислород

Строение листа растения

Для того чтобы охарактеризовать сущность процесса фотосинтеза, необходимо рассмотреть строение листа. Если рассмотреть под микроскопом, можно увидеть прозрачные клетки, в которых находятся от 50 до 100 зеленых пятнышек. Это хлоропласты, где находится хлорофилл - основной фотосинтетический пигмент, и в которых осуществляется фотосинтез.

Хлоропласт похож на маленькую сумочку, а внутри него - сумочки еще меньше. Они называются тилакоидами. Молекулы хлорофилла находятся на поверхности тилакоидов и расположены по группам, которые называются фотосистемами. У большинства растений существует два вида фотосистем (ФС): фотосистемаI и фотосистемаII. К фотосинтезу способны только клетки, имеющие хлоропласт.

Описание световой фазы

Какие реакции происходят во время световой фазы фотосинтеза? В группе ФСII энергия солнечного света предается электронам молекулы хлорофилла, вследствие чего электрон заряжается, то есть «возбуждается настолько», что выпрыгивает из группы фотосистемы и «подхватывается» молекулой-переносчиком в мембране тилакоида. Этот электрон переходит от переносчика к переносчику, пока не разрядится. После этого он может использоваться в другой группе ФСI для замены электрона.

В группе фотосистемы II недостает электрона, и теперь она положительно заряженная и требует новый электрон. Но где взять такой электрон? Область в группе, известная как комплекс выделения кислорода, поджидает беззаботно «прогуливающуюся» молекулу воды.

В молекулу воды входит один атом кислорода и два атома водорода . Комплекс выделения кислорода в ФСII имеет марганца четыре иона, которые забирают электроны у атомов водорода. В результате происходит расщепление молекулы воды на два положительных иона водорода, два электрона и один атом кислорода. Молекулы воды расщепляются , и атомы кислорода распределяются по парам, образуя при этом молекулы газа кислорода, который возвращает растение в воздух. Ионы водорода начинают собираться в сумочке тилакоида, отсюда растение сможет их использовать, а с помощью электронов решается проблема потери в комплексе ФС II, который готов повторить этот цикл много раз в секунду.

В тилакоидном мешочке происходит скопление ионов водорода, и они начинают искать выход. Два иона водорода, образующиеся всегда при распаде молекулы воды, это далеко не всё: проходя путь из комплекса ФС II в комплекс ФС I, электроны притягивают в мешочек и другие ионы водорода. Затем эти ионы скапливаются в тилакоиде. Как им оттуда выбраться?

Оказывается, у них имеется «турникет» с одним выходом - фермент, который используется при выработке клеточного «топлива», называемого АТФ (аденозинтрифосфат). Проходя через этот «турникет», ионы водорода предоставляют энергию, которая необходима для перезарядки уже используемых молекул АТФ. Молекулы АТФ - это клеточные «батареи». Они отдают энергию для реакций внутри клетки.

При сборе сахара нужна еще одна молекула. Она называется НАДФ (никотинамидадениндинуклеотидфосфат). Молекулы НАДФ - это «грузовики», каждый из них доставляет по атому водорода к ферменту молекулы сахара. Образование НАДФ происходит в комплексе ФС I. Пока фотосистема (ФС II) расщепляет молекулы воды и создает из них АТФ, фотосистема (ФС I) поглощает свет и выдает электроны, которые потом будут нужны при образовании НАДФ. Молекулы АТФ и НАДФ находятся на хранении в строме и потом будут использованы для образования сахара.

Продукты световой фазы фотосинтеза:

  • кислород
  • НАДФ*Н 2

Схема ночной фазы

После световой фазы протекает темновая стадия фотосинтеза. Впервые эту фазу открыл Кальвин. Впоследствии это открытие было названо с3 - фотосинтезом. У некоторых видов растений наблюдается вид фотосинтеза - с4.

В процессе фотосинтеза световой фазы сахар не производится. При свете образуется только АТФ и НАДФ. Ферменты используются в строме (пространстве вне тилакоида) для производства сахара. Хлоропласт можно сравнить с фабрикой, на которой бригады (ФС I и ФС II) внутри тилакоида производят грузовики и батареи (НАДФ и АТФ) для работы третьей бригады (особых ферментов) стромы.

Эта бригада образовывает сахар путем присоединения атомов водорода и молекулы углекислого газа благодаря химическим реакциям, используя при этом ферменты, находящиесяся в строме. Все три бригады работают днем, а «сахарная» и днем, и ночью, до того пока не израсходуется АТФ и НАДФ, которые остались после дневной смены.

В строме много атомов и молекул соединяются с помощью ферментов. Некоторые ферменты - это молекулы белка, имеющие особую форму, и это позволяет им брать те атомы или молекулы, которые нужны для определенной реакции. После того как произойдет соединение, фермент отпускает новообразованную молекулу, и такой процесс повторяется постоянно. В строме ферменты пускают по цепочке молекулы сахара, которые собрали, перестраивают их, заряжают с помощью АТФ, присоединяют углекислоту, добавляют водород, затем отправляют трехуглеродный сахар в другую часть клетки, где его преобразуют в глюкозу и множество других веществ.

Итак, темновая фаза характеризуется образованием молекул глюкозы. А из глюкозы синтезируются углеводы.

Фотосинтез световая и темновая фазы (таблица)

Роль в природе

Каково же значение фотосинтеза в природе? Можно смело сказать, что жизнь на Земле зависит от фотосинтеза.

  • С его помощью растения вырабатывают кислород, который так необходим для дыхания.
  • В процессе дыхания выделяется углекислый газ. Если бы его не поглощали растения, то в атмосфере бы возник парниковый эффект. С появлением парникового эффекта может меняться климат, таять ледники, в результате может затопить много земельных участков.
  • Процесс фотосинтеза помогает питать все живые существа, а также осуществляет снабжение человечества топливом.
  • Благодаря выделяемому с помощью фотосинтеза кислороду в виде кислородно-озонового экрана атмосферы происходит защита всего живого от ультрафиолетового излучения.

Растения превращают солнечный свет в запасенную химическую энергию в два этапа: сначала они улавливают энергию солнечного света, а затем используют ее для связывания углерода с образованием органических молекул.

Зеленые растения — биологи называют их автотрофами — основа жизни на планете. С растений начинаются практически все пищевые цепи. Они превращают энергию, падающую на них в форме солнечного света, в энергию, запасенную в углеводах (см. Биологические молекулы), из которых важнее всего шестиуглеродный сахар глюкоза. Этот процесс преобразования энергии называется фотосинтезом. Другие живые организмы получают доступ к этой энергии, поедая растения. Так создается пищевая цепь, поддерживающая планетарную экосистему.

Кроме того, воздух, которым мы дышим, благодаря фотосинтезу насыщается кислородом. Суммарное уравнение фотосинтеза выглядит так:

вода + углекислый газ + свет → углеводы + кислород

Растения поглощают углекислый газ, образовавшийся при дыхании, и выделяют кислород — продукт жизнедеятельности растений (см. Гликолиз и дыхание). К тому же, фотосинтез играет важнейшую роль в круговороте углерода в природе .

Кажется удивительным, что при всей важности фотосинтеза ученые так долго не приступали к его изучению. После эксперимента Ван Гельмонта , поставленного в XVII веке, наступило затишье, и лишь в 1905 году английский физиолог растений Фредерик Блэкман (Frederick Blackman, 1866-1947) провел исследования и установил основные процессы фотосинтеза. Он показал, что фотосинтез начинается при слабом освещении, что скорость фотосинтеза возрастает с увеличением светового потока, но, начиная с определенного уровня, дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза. Блэкман показал, что повышение температуры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и освещения скорость фотосинтеза возрастает значительно больше, чем при одном лишь усилении освещения.

На основании этих экспериментов Блэкман заключил, что происходят два процесса: один из них в значительной степени зависит от уровня освещения, но не от температуры, тогда как второй сильно определяется температурой независимо от уровня света. Это озарение легло в основу современных представлений о фотосинтезе. Два процесса иногда называют «световой» и «темновой» реакцией, что не вполне корректно, поскольку оказалось, что, хотя реакции «темновой» фазы идут и в отсутствии света, для них необходимы продукты «световой» фазы.

Фотосинтез начинается с того, что излучаемые солнцем фотоны попадают в особые пигментные молекулы, находящиеся в листе, — молекулы хлорофилла . Хлорофилл содержится в клетках листа, в мембранах клеточных органелл хлоропластов (именно они придают листу зеленую окраску). Процесс улавливания энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул — эти кластеры принято называть Фотосистемой I и Фотосистемой II . Номера кластеров отражают порядок, в котором эти процессы были открыты, и это одна из забавных научных странностей, поскольку в листе сначала происходят реакции в Фотосистеме II, и лишь затем — в Фотосистеме I.

Когда фотон сталкивается с 250-400 молекулами Фотосистемы II, энергия скачкообразно возрастает и передается на молекулу хлорофилла. В этот момент происходят две химические реакции: молекула хлорофилла теряет два электрона (которые принимает другая молекула, называемая акцептором электронов) и расщепляется молекула воды. Электроны двух атомов водорода, входивших в молекулу воды, возмещают два потерянных хлорофиллом электрона.

После этого высокоэнергетический («быстрый») электрон перекидывают друг другу, как горячую картофелину, собранные в цепочку молекулярные переносчики. При этом часть энергии идет на образование молекулы аденозинтрифосфата (АТФ), одного из основных переносчиков энергии в клетке (см. Биологические молекулы). Тем временем немного другая молекула хлорофилла Фотосистемы I поглощает энергию фотона и отдает электрон другой молекуле-акцептору. Этот электрон замещается в хлорофилле электроном, прибывшим по цепи переносчиков из Фотосистемы II. Энергия электрона из Фотосистемы I и ионы водорода, образовавшиеся ранее при расщеплении молекулы воды, идут на образование НАДФ-Н, другой молекулы-переносчика.

В результате процесса улавливания света энергия двух фотонов запасается в молекулах, используемых клеткой для осуществления реакций, и дополнительно образуется одна молекула кислорода. (Отмечу, что в результате еще одного, значительно менее эффективного процесса с участием одной лишь Фотосистемы I, также образуются молекулы АТФ.) После того как солнечная энергия поглощена и запасена, наступает очередь образования углеводов. Основной механизм синтеза углеводов в растениях был открыт Мелвином Калвином, проделавшим в 1940-е годы серию экспериментов, ставших уже классическими. Калвин и его сотрудники выращивали водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Им удалось установить химические реакции темновой фазы, прерывая фотосинтез на разных стадиях.

Цикл превращения солнечной энергии в углеводы — так называемый цикл Калвина — сходен с циклом Кребса (см. Гликолиз и дыхание): он тоже состоит из серии химических реакций, которые начинаются с соединения входящей молекулы с молекулой-«помощником» с последующей инициацией других химических реакций. Эти реакции приводят к образованию конечного продукта и одновременно воспроизводят молекулу-«помощника», и цикл начинается вновь. В цикле Калвина роль такой молекулы-«помощника» выполняет пятиуглеродный сахар рибулозодифосфат (РДФ). Цикл Калвина начинается с того, что молекулы углекислого газа соединяются с РДФ. За счет энергии солнечного света, запасенной в форме АТФ и НАДФ-H, сначала происходят химические реакции связывания углерода с образованием углеводов, а затем — реакции воссоздания рибулозодифосфата. На шести витках цикла шесть атомов углерода включаются в молекулы предшественников глюкозы и других углеводов. Этот цикл химических реакций будет продолжаться до тех пор, пока поступает энергия. Благодаря этому циклу энергия солнечного света становится доступной живым организмам.

В большинстве растений осуществляется описанный выше цикл Калвина, в котором углекислый газ, непосредственно участвуя в реакциях, связывается с рибулозодифосфатом. Эти растения называются C 3 -растениями, поскольку комплекс «углекислый газ—рибулозодифосфат» расщепляется на две молекулы меньшего размера, каждая из которых состоит из трех атомов углерода. У некоторых растений (например, у кукурузы и сахарного тростника, а также у многих тропических трав, включая ползучий сорняк) цикл осуществляется по-другому. Дело в том, что углекислый газ в норме проникает через отверстия в поверхности листа, называемые устьицами . При высоких температурах устьица закрываются, защищая растение от чрезмерной потери влаги. В C 3 -растения при закрытых устьицах прекращается и поступление углекислого газа, что приводит к замедлению фотосинтеза и изменению фотосинтетических реакций. В случае же кукурузы углекислый газ присоединяется к трехуглеродной молекуле на поверхности листа, затем переносится во внутренние участки листа, где углекислый газ высвобождается и начинается цикл Калвина. Благодаря этому довольно сложному процессу фотосинтез у кукурузы осуществляется даже в очень жаркую, сухую погоду. Растения, в которых происходит такой процесс, мы называем C 4 -растениями, поскольку углекислый газ в начале цикла транспортируется в составе четырехуглеродной молекулы. C 3 -растения — это в основном растения умеренного климата, а C 4 -растения в основном произрастают в тропиках.

Гипотеза Ван Ниля

Процесс фотосинтеза описывается следующей химической реакцией:

СО 2 + Н 2 О + свет → углевод + О 2

В начале XX века считалось, что кислород, выделяющийся в процессе фотосинтеза, образуется в результате расщепления углекислого газа. Эту точку зрения опроверг в 1930-е годы Корнелис Бернардус Ван Ниль (Van Niel, 1897-1986), в то время аспирант Стэнфордского университета в штате Калифорния. Он занимался изучением пурпурной серобактерии (на фото), которая нуждается для осуществления фотосинтеза в сероводороде (H 2 S) и выделяет в качестве побочного продукта жизнедеятельности атомарную серу. Для таких бактерий уравнение фотосинтеза выглядит следующим образом:

СО 2 + Н 2 S + свет → углевод + 2S.

Исходя из сходства этих двух процессов, Ван Ниль предположил, что при обычном фотосинтезе источником кислорода является не углекислый газ, а вода, поскольку у серобактерий, в метаболизме которых вместо кислорода участвует сера, фотосинтез возвращает эту серу, являющуюся побочным продуктом реакций фотосинтеза. Современное подробное объяснение фотосинтеза подтверждает эту догадку: первой стадией процесса фотосинтеза (осуществляемой в Фотосистеме II) является расщепление молекулы воды.