Как работает индукционный нагрев. Индукционные нагреватели своими руками

Технологии утепления

Принцип работы индукционного нагревателя основан на двух физических эффектах: первый заключается в том, что при движении проводящего контура в магнитном поле в проводнике возникает индуцированный ток, а второй основан на выделении тепла металлами, через которые пропускают ток. Первый индукционный нагреватель был реализован в 1900 году, когда был найден способ бесконтактного нагрева проводника – для этого использовали токи высокой частоты, которые индуцировались с помощью переменного магнитного поля.

Индукционный нагрев нашёл применение в различных сферах деятельности человека благодаря:

  • быстрому разогреву;
  • возможности работы в различных по физическим свойствам средах (газ, жидкость, вакуум);
  • отсутствию загрязнений продуктами горения;
  • возможности избирательного нагрева;
  • формам и размерам индуктора – они могут быть любыми;
  • возможности автоматизации процесса;
  • высокому проценту КПД – до 99%;
  • экологичности – нет вредных выбросов в атмосферу;
  • длительному сроку службы.

Сфера применения: отопление помещений

В быту схема индукционного нагревателя была реализована для и плит. Первые получили особенно большую популярность и признание у пользователей за счёт отсутствия нагревательных элементов, которые снижают работоспособность в котлах с другим принципом действия, и разъёмных соединений, что даёт экономию на обслуживании систем индукционного отопления.

Примечание: Схема устройства настолько проста, что может быть создана в домашних условиях, и своими руками можно создать самодельный нагреватель.

На практике используются несколько вариантов, где используется разного типа индукторы:

Принцип действия

Последний вариант, наиболее часто используемый в котлах отопления, стал востребован за счёт простоты его реализации. Принцип работы установки индукционного нагрева основан на передаче энергии магнитного поля теплоносителю (воде). Магнитное поле формируется в индукторе. Переменный ток, проходя через катушку, создаёт вихревые потоки, которые трансформируют энергию в тепло.


Вода, подаваемая через нижний патрубок в котёл, прогревается за счёт передачи энергии, и выходит через верхний патрубок, попадая дальше в систему отопления. Для создания давления используют встроенный насос. Постоянно циркулирующая в котле вода не позволяет элементам перегреваться. Кроме того, во время работы происходит вибрация теплоносителя (при низком уровне шума) за счёт чего невозможно отложение накипи на внутренних стенках котла.

Индукционные нагреватели могут быть реализованы различными способами.

Реализация в бытовых условиях

Индукционное отопление ещё не завоевало в достаточной степени рынок из-за высокой стоимости самой системы обогрева. Так, например, для промышленных предприятий подобная система обойдётся в 100 000 рублей, для бытового использования – от 25 000 руб. и выше. Поэтому вполне понятен интерес к схемам, которые позволяют создать самодельный индукционный нагреватель своими руками


На базе трансформатора

Основным элементом системы индукционного отопления с трансформатором станет само устройство, у которого есть первичная и вторичная обмотки. Вихревые потоки будут формироваться в первичной обмотке и создадут электромагнитное индукционное поле. Это поле будет воздействовать на вторичную, которая и есть, по сути, индукционный нагреватель, реализованный физически в виде корпуса котла отопления. Именно вторичная короткозамкнутая обмотка передает энергию теплоносителю.


Главными элементами установки индукционного нагрева являются:

  • сердечник;
  • обмотка;
  • два вида изоляции – тепло- и электроизоляция.

Сердечник – это две ферримагнитные трубки разного диаметра с толщиной стенок не менее 10 мм, вваренные друг в друга. Тороидальная обмотка из медного провода производится по внешней трубке. Необходимо наложить от 85 до 100 витков с равным расстоянием между витками. Переменный ток, изменяясь во времени, создаёт вихревые потоки в замкнутом контуре, которые и нагревают сердечник, следовательно, и теплоноситель, осуществляя индукционный нагрев.

С использованием высокочастотного сварочного инвертора

Индукционный нагреватель может быть создан с использованием сварочного инвертора, где главными компонентами схемы служат генератор переменного тока, индуктор и нагревательный элемент.

Генератор используется для преобразования стандартной частоты в сети электропитания 50 Гц в в ток с более высокой частотой. Этот модулированный ток подаётся на цилиндрическую катушку-индуктор, где в качестве обмотки используется медная проволока.


Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю. Таким образом реализуется ещё одна схема индукционного отопления, выполненная своими руками.

Нагревательный элемент тоже может быть создан своими руками из нарезанной металлической проволоки длиной около 5 мм и отрезка полимерной трубы, в которую помещается металл. При установке вентилей сверху и снизу трубы следует проверить плотность наполнения – не должно оставаться свободного пространства. Согласно схеме поверх трубы накладывается около 100 витков медной проводки, которая и является индуктором, подключаемым к клеммам генератора. Индукционный нагрев медной проволоки происходит за счёт вихревых токов, формируемых переменным магнитным полем.

Примечание: Индукционные нагреватели своими руками могут выполнены по любой схеме, главное помнить о том, что важно осуществить надёжную теплоизоляцию, в противном случае КПД системы отопления значительно упадёт.

Правила безопасности

Для систем отопления, где используется индукционный нагрев, важно соблюдать несколько правил во избежание утечек, потерь КПД, расходования электроэнергии, несчастных случаев.

  1. В системах индукционного отопления необходимо наличие предохранительного клапана для сброса воды и пара на случай выхода из строя насоса.
  2. Манометр и УЗО обязательны для безопасной работы отопительной системы, собранной своими руками.
  3. Наличие заземления и электроизоляции всей системы индукционного отопления предупредит поражение электрическим током.
  4. Во избежание пагубного воздействия электромагнитного поля на организм человека подобные системы лучше выносить за пределы жилой зоны, где следует соблюдать правила монтажа, согласно которым устройство индукционного нагрева должно размещаться на расстоянии 80 см от горизонтальных (пола и потолка) и 30 см от вертикальных поверхностей.
  5. Перед включением системы следует обязательно проверять наличие теплоносителя.
  6. Для предотвращения сбоев в работе электросети рекомендуется подключение котла с индукционным нагревом, выполненного своими руками по предложенным схемам, к отдельной питающей линии, сечение кабеля которой будет составлять не менее 5 мм2. Обычная проводка может не выдержать требуемое энергопотребление.

ИНДУКЦИОННЫЙ НАГРЕВ, нагрев токопроводящих (в основном металлических) тел и ионизированных газов в результате выделения теплоты вихревыми (индукционными) токами, возбуждаемыми переменным электромагнитным полем. Обеспечивает бесконтактный способ передачи энергии от источника электромагнитного поля (индуктора) в нагреваемое тело с преобразованием её в тепловую непосредственно в теле; наиболее эффективный способ нагрева. При индукционном нагреве теплота, выделяющаяся в нагреваемом теле (по Джоуля - Ленца закону), зависит от его размеров и физических свойств, частоты и напряжённости магнитного поля. Особенностью индукционного нагрева является неравномерное распределение мощности в нагреваемом теле, обусловленное диссипацией энергии поля и затуханием электромагнитной волны. Такое затухание характеризуют эквивалентной глубиной δ э (м), т. е. глубиной поверхностного слоя плоского тела, в котором выделяется 86,5% мощности электромагнитной волны: δ э ≈ 500√p/(μ r ∙f), где р - удельное электрическое сопротивление (Ом·м), μ r - относительная магнитная проницаемость тела, f - частота изменения поля (Гц). Для индукционного нагрева используют токи разных частот - промышленной (50 Гц), повышенной (150 и 250 Гц), средней (от 0,5 до 10 кГц), высокой (67 и 440 кГц), сверхвысокой (1,76 и 5,28 МГц).

Индукционный нагрев применяют: в индукционных нагревательных установках - для нагрева заготовок под пластическую обработку (глубинный или сквозной индукционный нагрев) и деталей под химико-термическую обработку (локальный или поверхностный индукционный нагрев), в том числе под поверхностную закалку токами ВЧ; в индукционных печах - для плавки чёрных и цветных металлов и сплавов, а также зонной плавки, плавки во взвешенном состоянии, для получения низкотемпературной плазмы (смотри Плазмотрон). Индуктор (основной элемент конструкции индукционных установок и печей) создаёт переменное магнитное поле (напряжённостью 10 5 -10 6 А/м). Нагреваемый материал может быть в виде твёрдого массивного тела (в индукционных нагревательных установках), жидкого тела (в индукционных плавильных печах) и ионизированного газа (в СВЧ плазмохимических установках). Первая промышленная индукционная печь для подогрева жидкой стали (до 80 кг) в открытом горизонтальном кольцевом канале введена в эксплуатацию в Швеции в 1900 году, в СССР такие печи начали строить в 1930-х годах.

В индукционных нагревательных установках используют в основном индукторы 2 типов: проходные - круглого или квадратного поперечного сечения для нагрева заготовок по всей длине, щелевые и овального сечения для местного нагрева концов длинных заготовок (рис. 1), а также с поперечным магнитным полем (для листового материала) и замкнутым магнитопроводом (для кольцевых заготовок); закалочные - одновитковые (для внешних цилиндрических поверхностей), петлевые, зигзагообразные и в виде плоской спирали (для плоских поверхностей), кольцевые соленоидные (для внутренних цилиндрических поверхностей). Через отверстия в индукторе или с помощью спрейерного устройства на поверхность закаливаемой детали подают охлаждающую жидкость (воду, масло, различные эмульсии).

Индукционные плавильные печи могут быть канальными, работающими на промышленной частоте, вместимостью до 150 тонн и мощностью до 4,0 MBA, и тигельными - вместимостью на средней частоте до 25 тонн и на промышленной частоте (при жидкой завалке) до 60 т. В канальной печи (рис. 2) температура металла в ванне (шахте) повышается за счёт теплопередачи от жидкого металла, находящегося в канале. Один или несколько вертикальных либо горизонтальных каналов (прямоугольного или круглого сечения), расположенных в огнеупорной футеровке - так называемом подовом камне, охватывают замкнутый магнитопровод с многовитковым цилиндрическим индуктором. В канале жидкий металл с более высокой температурой под действием электромагнитных сил и свободной тепловой конвекции интенсивно циркулирует, поступая через устье канала в ванну (шахту). Индукционные канальные печи применяют в основном в цветной металлургии для непрерывных технологических процессов в качестве плавильных агрегатов и миксеров.

Рис. 2. Схема индукционной канальной печи (разрез): 1 - ванна (шахта); 2- цилиндрический индуктор; 3- замкнутый магнитопровод; 4 - футеровка канала (подовый камень); 5 - вертикальный кольцевой канал; 6 - устье канала.

В тигельной печи (рис. 3) металл находится в огнеупорном тигле, расположенном внутри цилиндрического многовиткового индуктора. Отдельные разомкнутые магнитопроводы в качестве ферромагнитных экранов защищают кожух печи от создаваемых индуктором электромагнитных волн. Энергия затрачивается на нагрев металла и его интенсивное перемешивание. В тигле возникает двухконтурная циркуляция металла с образованием выпуклого мениска (высота 5-15% от глубины металла), что затрудняет создание шлакового слоя и ограничивает удельную мощность (не более 300 кВт/т). Тигельные печи взрывоопасны (из-за невысокой стойкости футеровки тигля), их оснащают сигнализатором состояния футеровки. Индукционные тигельные печи широко распространены в сталеплавильном производстве для периодической работы при переплаве легированных сталей; для плавки высококачественных сталей - вакуумные и индукционно-плазменные печи, для выплавки особо чистых металлов и сплавов - печи с водоохлаждаемым («холодным») тиглем в виде электроизолированных секций-труб (так называемый секционированный тигель).

Рис. 3. Схема индукционной тигельной печи (разрез): 1 - тигель; 2 - цилиндрический индуктор; 3 - ферромагнитный экран; 4 - кожух; 5 - сигнализатор состояния футеровки тигля; стрелки - траектория движения жидкого металла.

Лит.: Вайнберг А. М. Индукционные плавильные печи. М., 1967; Теплотехника металлургического производства. М., 2002. Т. 1: Теоретические основы. Т. 2: Конструкции и работа печей; Индукционные тигельные печи. 2-е изд. Екатеринбург, 2002.

Содержание

Сегодня электроэнергия обходится потребителям совсем недешево, но работающие на таком ресурсе отопительные приборы пользуются у населения определенной популярностью. Большой интерес вызывают устройства, функционирующие на принципе электромагнитной индукции. В статье описано, как работает подобное устройство, где используется, и как сделать индукционный нагреватель своими руками. Но прежде - немного истории.

Вихревой индукционный нагреватель

В начале девятнадцатого века ученый из Англии Фарадей проводил эксперименты, преследуя цель преобразовать магнетизм в электроэнергию. У него вышло получить поток энергии в первичной обмотке, состоящей из провода, накрученного на сердечник, изготовленный из железа. Таким образом стала открыта электромагнитная индукция. Произошло это в 1831 г.

Первую плавильню, использующую мощный водонагреватель, работающий по принципу индукции, открыли в Англии, в тридцатых годах прошлого века. В восьмидесятых прошлого века принцип индукции применялся более активно. Специалисты разработали вихревые нагреватели. Ими обогревали заводские цеха и различные производственные помещения. Через некоторое время начали производить бытовые устройства.

Принцип работы индуктора

Вихревые нагреватели обычно используются для отопительных котлов. Они пользуются большим спросом у населения за счет своей мощности и простой конструкции. Функционирование их основывается на передаче теплоносителю энергии магнитного поля. Вода, подающаяся в аппарат, нагревается путем подачи энергии. Далее она подается в отопительную систему. Чтобы появилось давление, применяется насос. Вода циркулирует и защищает элементы от перегрева. Теплоноситель вибрирует, что предотвращает появление накипи на стенках оборудования.

Если изучить изнутри индукционный обогреватель, там можно обнаружить металлический корпус, изоляцию и сердечник. Основное отличие такого нагревателя от промышленных - обмотка медными проводниками. Последняя находится между 2-ух сваренных стальных труб.


Принцип электромагнитной индукции

Самодельный индукционный нагреватель мало весит, обладает хорошим КПД и компактными размерами. Как сердечник, тут используется труба с обмоткой. Вторая труба нужна для нагревания. Ток, генерируемый магнитным полем, греет воду. По такому принципу функционируют самодельные устройства и часть современных нагревателей.

Устройство нагревательного прибора

Прибор состоит из таких элементов :

  1. Пластиковая трубка.
  2. Сетка из нержавейки.
  3. Проволока из стали.
  4. Медная проволока.
  5. Сварочный инвертор.

Одно из главных достоинств данного устройства - это простая конструкция. Схема индукционного нагревателя примерно такова. В круглом корпусе находится катушка - индуктор. Внутри последнего находится отрезок стальной трубы с 2-мя патрубками на концах. Они нужны для присоединения прибора к отопительной системе. После подключения через трубу будет проходить вода. Труба будет нагреваться. От соприкосновения с ней разогревается теплоноситель.


Схема устройства индукционного нагревателя

У других видов прибора катушка крепится к электрической сети, однако имеется и другая схема подключения. Отличается она преобразователем, который повышает частоту колебаний тока, подаваемого на катушку. Этот преобразователь называется инвертором и состоит их 3-х модулей:

  1. Выпрямитель.
  2. Инвертор с 2-мя транзисторами.
  3. Схема управления транзисторами.

Процессы, происходящие в устройстве, похожи на работу трансформатора. Разница во вторичной обмотке, которая тут короткозамкнута и расположена внутри первичной. Еще одно отличие в том, что в случае с трансформатором нагрев - побочный эффект, его стараются избежать.

Интересный факт: обслуживание индукционника обойдется гораздо дешевле, чем, если использовать газовый котел или бойлер. Аппарат состоит из минимума деталей, практически не выходящих из строя. Ломаться в нагревателе нечему. Воду греет обыкновенная трубка, которая в отличие от того же ТЭНа не может перегореть либо испортиться.

Сфера применения

Сегодня применение индукционного нагрева используется очень часто. Основные области применения :

  • плавка металла, получение новых сплавов;
  • производство металлической проволоки;
  • ювелирное дело;
  • производство котлов отопления;
  • термическая обработка запчастей для транспортных средств;
  • медицинская отрасль (дезинфекция инструментов, врачебного оборудования);
  • машиностроение, обогрев автосервиса;
  • промышленные печи.

Недостатки и достоинства

Рассмотрим положительные характеристики и преимущества индукционного оборудования:

  1. Нагрев производится в любой среде.
  2. Возможность изготовления сверхчистых сплавов.
  3. Быстрый нагрев и плавка любого материала, который проводит ток.
  4. Элементы прибора монтируются снаружи, врезки отсутствуют. Это гарантирует исключение протечек.
  5. Индукционный водонагреватель не загрязняет окружающую среду.
  6. Удобен при необходимости нагрева определенного участка поверхности.
  7. Площадь контакта теплоносителя с поверхностью нагревателя во много раз больше, нежели в аппаратах с трубчатыми электронагревателями. За счет этого среда греется очень быстро.
  8. Компактные размеры прибора.
  9. Оборудование легко настраивается на нужный режим работы и без труда регулируется.
  10. Имеется возможность изготовления прибора любой формы (в том числе самостоятельно). Это предупреждает локальный нагрев и способствует равномерному распределению тепла.

Простой нагреватель индукционного типа

Проточный нагреватель такого типа практически не имеет минусов, если сравнивать с приборами, работающими по иным принципам. Единственная сложность эксплуатации в том, что необходимо сопоставить индуктор с заготовкой. Иначе нагрев будет недостаточным и маломощным.

Процесс изготовления своими руками

Для работы пригодятся следующие инструменты:

Еще понадобится проволока из меди, которая наматывается на корпус сердечника. Устройство будет выполнять роль индуктора. Контакты проволоки соединяются с клеммами инвертора так, чтобы не образовалось скруток. Отрезок материала, нужный для сборки сердечника, должен быть нужной длины. В среднем число витков равно 50, диаметр проволоки - 3-м миллиметрам.


Медная проволока разного диаметра для обмотки

Теперь перейдем к сердечнику. В его роли будет полимерная труба, сделанная из полиэтилена. Такой вид пластмассы выдерживает довольно высокую температуру. Диаметр сердечника - 50 миллиметров, толщина стенок - минимум 3 мм. Данная деталь используется как калибр, на который навивается проволока из меди, формируя индуктор. Собрать простейший индукционный нагреватель воды может практически любой человек.

На видео увидите способ - как самостоятельно организовать индукционный нагрев воды для отопления:

Первый вариант

На 50-миллиметровые отрезки рубится проволока, ей заполняется пластиковая трубка. Чтобы она не высыпалась из трубы, следует закупорить торцы проволочной сеткой. На концах ставятся переходники от трубы, в том месте, где подключается нагреватель.

На корпус последнего медной проволокой наматывается обмотка. Для этой цели нужно примерно 17 метров проволоки: нужно сделать 90 витков, диаметр трубы - 60 миллиметров. 3,14×60×90=17 м.

Важно знать! В ходе проверки функционирования устройства следует тщательно удостовериться, что в нем есть вода (теплоноситель). Иначе корпус устройства быстро расплавится.

Труба врезается в трубопровод. Нагреватель подключается к инвертору. Осталось заполнить устройство водой и включить. Все готово!

Второй вариант

Этот вариант гораздо попроще. Выбирается прямой участок метрового размера на вертикальной части трубы. Его следует тщательно очистить от краски, используя наждачку. Далее этот участок трубы покрывается тремя слоями электротехнической ткани. Медной проволокой наматывается индукционная катушка. Вся система подключения хорошенько изолируется. Теперь можно подключить сварочный инвертор, и процесс сборки полностью завершен.


Индукционная катушка, обмотанная медной проволокой

Перед тем как начинать изготовление водонагревателя своими руками, желательно ознакомиться с характеристиками заводских изделий и изучить их чертежи. Это поможет разобраться с исходными данными самодельного оборудования и избежать возможных ошибок.

Третий вариант

Чтобы сделать нагреватель этим более сложным способом, нужно использовать сварку. Для работы еще понадобится трехфазный трансформатор. Друг в друга нужно вварить две трубы, которые будут выполнять роль нагревателя и сердечника. На корпус индукционника накручивается обмотка. Таким образом повышается производительность прибора, который имеет компактные размеры, что очень удобно при его эксплуатации в домашних условиях.


Обмотка на корпусе индукционника

Для подвода и отвода воды, в корпус индукционника ввариваются 2 патрубка. Чтобы не терять тепло и предотвратить возможные утечки тока, нужно сделать изоляцию. Она избавит от проблем, описанных выше, и полностью исключит появление шума при работе котла.

Техника безопасности должна соблюдаться всегда. Особенно когда мастерят что-то самостоятельно. Здесь нагреватели применяются для систем, имеющих принудительную циркуляцию. Теплоэнергия вырабатывается очень быстро и может возникнуть перегрев теплоносителя.

Нельзя забывать про предохранительный клапан. Он крепится на нагревателе. В случае когда циркулярный насос перестанет работать, то стопроцентно случится перегрев теплоносителя. Если клапан не будет установлен заранее, то произойдет разрыв системы. Последняя должна из предосторожности оснащаться термостатом. Если нагреватель заключен в металлический корпус, то он обязательно заземляется.


Нагреватель в металлическом корпусе

Так как у самодельной конструкции нет нормального экранирования, то индукционник устанавливается как минимум в 80-и сантиметрах от горизонтальных поверхностей. Расстояние до стены - от 30 сантиметров.

Совет: мощность самодельных нагревателей может способствовать распространению электромагнитного излучения. Устройство желательно экранировать оцинкованной сталью и не устанавливать в жилом помещении! Электромагнитное переменное поле есть внутри и снаружи катушки. Оно будет нагревать все металлические поверхности, расположенные рядом.

Так, без глобальных финансовых трат, нетрудно собственноручно сделать этот нехитрый прибор. Схема сборки проста, и справиться с работой по сборке нагревателя собственноручно сможет практически каждый. Тут не требуется профильных технических знаний. Завершить работу можно буквально за несколько часов.

И устройствах тепло в нагреваемом приборе выделяется токами, возникающими в переменном электромагнитном поле внутри агрегата. Называются они индукционными. В результате их действия происходит повышение температуры. Индукционный нагрев металлов основывается на двух главных физических законах:

  • Фарадея-Максвелла;
  • Джоуля-Ленца.

В металлических телах при их помещении в переменное поле начинают возникать вихревые электрические поля.

Устройство индукционного нагрева

Все происходит следующим образом. Под действием переменного изменяется электродвижущая сила (ЭДС) индукции.

ЭДС действует так, что внутри тел протекают вихревые токи, которые и выделяют теплоту в полном соответствии с законом Джоуля-Ленца. Также ЭДС генерирует переменный ток в металле. При этом происходит выделение тепловой энергии, что и приводит к повышению температуры металла.

Этот вид нагрева самый простой, так как является бесконтактным. Он позволяет достигать очень высоких температур, при которых можно обрабатывать

Чтобы обеспечить индукционный нагрев, требуется создать в электромагнитных полях определенное напряжение и частоту. Сделать это можно в специальном приборе - индукторе. Питание его производится от промышленной сети в 50 Гц. Можно для этого использовать индивидуальные источники питания - преобразователи и генераторы.

Самое простое устройство индуктора небольшой частоты - спираль (проводник изолированный), который может быть помещен внутрь металлической трубы или намотан на нее. Проходящие токи нагревают трубу, которая, в свою очередь, передает тепло в окружающую среду.

Применение индукционного нагрева на малых частотах - достаточно редко. Более распространена обработка металлов на средней и высокой частоте.

Такие устройства отличаются тем, что магнитная волна попадает на поверхность, где происходит ее затухание. Тело преобразует энергию этой волны в тепло. Для достижения максимального эффекта обе составляющие должны быть близки по форме.

Где используются

Применение индукционного нагрева в современном мире широко распространено. Область использования:

  • плавка металлов, их пайка бесконтактным способом;
  • получение новые сплавов металлов;
  • машиностроение;
  • ювелирное дело;
  • изготовление небольших деталей, которые могут быть повреждены при применении других методов;
  • (причем детали могут быть самой сложной конфигурации);
  • термообработка (обработка деталей для машин, закаленных поверхностей);
  • медицина (дезинфекция приборов и инструментов).

Индукционный нагрев: положительные характеристики

У такого способа немало преимуществ:

  • С его помощью можно быстро нагреть и расплавить любой проводящий ток материал.
  • Позволяет производить нагрев в любой среде: в вакууме, атмосфере, жидкости, не проводящей ток.
  • За счет того что нагревается только проводящий материал, стенки, слабо поглощающие волны, остаются холодными.
  • В специализированных областях металлургии получение сверхчистых сплавов. Это занимательный процесс, ведь металлы перемешиваются в подвешенном состоянии, в оболочке из защитного газа.

  • В сравнении с другими типами, индукционный не загрязняет окружающую среду. Если в случае с газовыми горелками загрязнение присутствует, так же как и в дуговом нагреве, то индукционный это исключает, за счет "чистого" электромагнитного излучения.
  • Малые размеры прибора индуктора.
  • Возможность изготовления индуктора любой формы, это не приведет к локальному нагреву, а будет способствовать равномерному распределению тепла.
  • Незаменим, если необходимо нагреть только определенный участок поверхности.
  • Не составляет большого труда настроить такое оборудование на нужный режим и регулировать его.

Недостатки

Система имеет такие минусы:

  • Самостоятельно установить и наладить тип нагрева (индукционный) и его оборудование довольно непросто. Лучше обратиться к специалистам.
  • Необходимость точно сопоставить индуктор и заготовку, иначе недостаточным будет индукционный нагрев, мощность его может достигать малых величин.

Отопление индукционным оборудованием

Для обустройства индивидуального отопления можно рассмотреть такой вариант, как индукционный нагрев.

В качестве агрегата пойдет трансформатор, состоящий из обмоток двух видов: первичной и вторичной (которая, в свою очередь, коротко замкнута).

Как работает

Принцип работы обычного индуктора: вихревые потоки проходят внутри и направляют электрическое поле на второй корпус.

Чтобы через такой котел проходила вода, к нему подводят два патрубка: для холодной, что поступает, и на выходе теплой воды - второй патрубок. За счет давления вода постоянно циркулирует, что исключает возможность нагрева элемента индуктора. Наличие накипи здесь исключено, так как в индукторе происходят постоянные вибрации.

Такой элемент в обслуживании будет недорогим. Главный плюс в том, что прибор работает бесшумно. Устанавливать его можно в любом помещении.

Изготовление оборудования самостоятельно

Установка индукционного нагрева большой сложности не составит. Даже тот, кто не имеет опыта, после тщательного изучения справится с поставленной задачей. Перед началом работы нужно запастись следующими необходимыми элементами:

  • Инвертор. Его можно использовать от сварочного аппарата, он недорогой и будет необходимой высокой частоты. Изготовить его можно самостоятельно. Но это затратное занятие по времени.
  • Корпус нагревателя (для этого подойдет кусок пластиковой трубы, индукционный нагрев трубы в этом случае будет самым эффективным).
  • Материал (сгодится проволока диаметром не более семи миллиметров).
  • Приспособления для подключения индуктора к сети отопления.
  • Сетка для удержания проволоки внутри индуктора.
  • Индукционною катушку можно создать из (она должна быть эмалированной).
  • Насос (для того, чтобы вода подавалась в индуктор).

Правила изготовления оборудования самостоятельно

Для того чтобы установка индукционного нагрева работала правильно, ток для такого изделия должен соответствовать мощности (составлять он должен не меньше 15 ампер, если требуется, то можно больше).

  • Проволока должна быть нарезана на куски не более пяти сантиметров. Это нужно для эффективного нагрева в высокочастотном поле.
  • Корпус должен быть по диаметру не меньше, чем подготовленная проволока, и обладать толстыми стенками.
  • Для крепления к сети отопления на одну сторону конструкции крепится специальный переходник.
  • На дно трубы нужно положить сетку для предотвращения выпадения проволоки.
  • Последняя нужна в таком количестве, чтобы она заполнила все внутреннее пространство.
  • Конструкция закрывается, ставится переходник.
  • Затем сооружают из этой трубы катушку. Для этого обматывают ее уже заготовленной проволокой. Число витков нужно соблюсти: минимум 80, максимум 90.
  • После подключения к системе отопления в аппарат заливают воду. Катушку подключают к заготовленному инвертору.
  • Устанавливается насос для подачи воды.
  • Монтируется регулятор температуры.

Таким образом, расчет индукционного нагрева будет зависеть от следующих параметров: длина, диаметр, температура и время обработки. Обращайте внимание и на индуктивность подводящих к индуктору шин, которая может быть намного больше показателей самого индуктора.

Про варочные поверхности

Еще одно применение в домашнем обиходе, кроме системы отопления, данный вид нагрева нашел в варочных панелях плит.

Такая поверхность имеет вид обычного трансформатора. Катушка его спрятана под поверхность панели, которая может быть стеклянной или керамической. По ней проходит ток. Это первая часть катушки. А вот второй является та посуда, в которой будет проходить приготовление пищи. На дне посуды создаются вихревые токи. Они и нагревают сначала посуду, а затем продукты в ней.

Тепло будет выделяться только тогда, когда на поверхность панели поставят посуду.

Если она отсутствует, никакого действия не происходит. Индукционная зона нагрева будет соответствовать диаметру поставленной на нее посуды.

Для таких плит нужна специальная посуда. Большинство ферромагнитных металлов могут взамодействовать с индукционным полем: алюминий, нержавеющая и эмалированная сталь, чугун. Не подходят для таких поверхностей только: медная, керамическая, стеклянная и изготовленная из неферромагнитных металлов посуда.

Естественно, что включится только тогда, когда подходящая посуда будет на ней установлена.

Современные плиты снабжены электронным блоком управления, что позволяет распознавать пустую и непригодную для применения посуду. Основными преимуществами варочных являются: безопасность, легкость уборки, быстрота, эффективность, экономичность. Об поверхность панели никогда нельзя обжечься.

Итак, мы выяснили, где используется данный тип нагрева (индукционный).

Описание метода

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор , представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор , в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Формула для вычисления глубины скин-слоя в мм:

,

где μ 0 = 4π·10 −7 - магнитная постоянная Гн/м, а ρ - удельное электрическое сопротивление материала заготовки при температуре обработки.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение

  • Сверхчистая бесконтактная плавка, пайка и сварка металла.
  • Получение опытных образцов сплавов.
  • Гибка и термообработка деталей машин.
  • Ювелирное дело.
  • Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
  • Поверхностная закалка.
  • Закалка и термообработка деталей сложной формы.
  • Обеззараживание медицинского инструмента.

Преимущества

  • Высокоскоростной разогрев или плавление любого электропроводящего материала.
  • Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.
  • Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева - эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал - металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.
  • За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе - так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).
  • Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
  • Удобство эксплуатации за счёт небольшого размера индуктора .
  • Индуктор можно изготовить особой формы - это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.
  • Легко провести местный и избирательный нагрев.
  • Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).
  • Лёгкая автоматизация оборудования - циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Недостатки

  • Повышенная сложность оборудования, необходим квалифицированный персонал для настройки и ремонта.
  • При плохом согласовании индуктора с заготовкой требуется бо́льшая мощность на нагрев, чем в случае применения для той же задачи ТЭНов, электрических дуг и т. п.

Установки индукционного нагрева

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах .

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:

  1. повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
  2. применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор , RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли , генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёхточки:

  1. Низкий кпд (менее 40 % при применении лампы).
  2. Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являютcя фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.
  3. При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.
  4. При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата , Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Современные твч-генераторы - это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать
а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.
Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания - заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается - это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания

  • Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).
  • Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).
  • При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.
  • При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка - дуги).
  • Иногда в качестве генератора высокой частоты использовали списанные мощные радиопередатчики, где антенный контур заменяли на нагревательный индуктор.

См. также

Ссылки

Литература

  • Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. - М .: Госэнергоиздат, 1948. - 332 с.
  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля . - 1977. - В. 5. - С. 26-30.
  • Васильев А. С. Ламповые генераторы для высокочастотного нагрева. - Л. : Машиностроение, 1990. - 80 с. - (Библиотечка высокочастотника-термиста; Вып. 15). - 5300 экз. - ISBN 5-217-00923-3
  • Власов В. Ф. Курс радиотехники. - М .: Госэнергоиздат, 1962. - 928 с.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. - М .: Госэнергоиздат, 1959. - 512 с.
  • Лозинский М. Г. Промышленное применение индукционного нагрева. - М .: Изд-во АН СССР, 1948. - 471 с.
  • Применение токов высокой частоты в электротермии / Под ред. А. Е. Слухоцкого. - Л. : Машиностроение, 1968. - 340 с.
  • Слухоцкий А. Е. Индукторы. - Л. : Машиностроение, 1989. - 69 с. - (Библиотечка высокочастотника-термиста; Вып. 12). - 10 000 экз. -