Используя операцию дивергенция получить четвертое уравнение максвелла. Уравнения максвелла и их физический смысл

Окна и двери

Вопрос 1. Электромагнитное поле. Векторы ЭМП. Графическое изображение полей Электромагни́тное по́ле - фундаментальноефизическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупностьэлектрическогоимагнитногополей, которые могут, при определённых условиях, порождать друг друга, а по сути являются одной сущностью, формализуемой черезтензор электромагнитного поля.

Векторы электромагнитного поля:

Электрическое поле. Одной из основных векторных характеристик электромагнитного поля является напряженность электрического поля. Под напряженностью электрического поля подразумевают силу, с которой электрическое поле действует на положительный единичный точечный заряд внесенный в поле.

(1)

В физике это уточняется: заряд q должен быть достаточно малым с тем, чтобы можно было пренебречь изменением распределения электрических зарядов формирующих это поле.

Рассмотрим этот процесс упрощенно в рамках классической теории:

Вещество состоит из атомов. Атом состоит из положительного ядра и отрицательных электронов. Сочетание атомов образуют молекулу. Различают вещества с полярными и неполярными молекулами. В случае неполярных атомов или молекул точка приложения равнодействующей всех сил, действующих на отрицательные заряды, совпадает с точкой приложения равнодействующей всех сил, действующих на положительные заряды. Это возможно в том случае, если центр тяжести молекулы совпадает с центром тяжести протонов. В полярных молекулах эти центры не совпадают и полярную молекулу можно уподобить элементарному диполю, т.е. системе состоящей из двух разноименных зарядов, разнесенных в пространстве на расстояние l. Диполи характеризуются дипольным моментом:

Эффект поляризованности вещества характеризуют суммарным дипольным моментом: в рассмотренном объеме dV:

(4) - дипольный момент соответствующий отдельным атомам или молекулам. Формула (4) осуществляется геометрическим суммирование в объеме V.

Наряду с напряженностью электрического поля используют также еще одну векторную величину: - вектор электрической индукции, либо вектор электрического смещения:(8);;

Отсюда следует, что при одинаковом расположении и величине электрических зарядов векторное поле не зависит от свойств среды.

Как известно, сила, действующая на положительный точечный электрический заряд движущийся в магнитном поле определяется силой Лоренца: (1),

где (2) ; (3) ; .

Магнитная сила пропорциональна скорости перемещения заряда и направлена перпендикулярно направлению движения заряда.

Физический смысл: величина называется вектором магнитной индукции и равна силе, с которой магнитное поле действует на положительный точечный заряд, движущийся с единичной скоростью в направлении, перпендикулярном.

Поля изображают с помощью силовых линий. Под “силовыми” подразумевают линии, в каждой точке которых касательные изображают направление изображаемого поля. Изменение амплитуды поля указывают числом силовых линий, приходящихся на единицу площади поверхности перпендикулярно силовым линиям. Пусть имеется векторное поле А , которое в каждой точке пространства может быть выражено в декартовой системе:

l - силовая линия поля А , - единичные орты. Получим дифференциальное уравнение силовой линии: dr можно записать через его проекцию:(1),

Предполагаем, что известна функция, описывающая силовую линию:

Из векторного анализа известно, что два вектора параллельны, если равны отношения соответствующих проекций:

Это и есть дифференциальное уравнение силовой линии.

Вопрос 2. Первое уравнение Максвелла в интегральной и дифференциальной формах.

Первое уравнение Максвелла является обобщением закона полного тока (закона Ампера). В домаксвелловской формулировке это уравнение могло быть сформулировано следующим образом: циркуляция вектора напряженности Н магнитного поля по замк­нутому контуру Г равна току /, пронизывающему данный контур:

До Максвелла под током / понимали только ток проводимости. В общем случае распределение тока / внутри контура Г может быть неравномерным. При этом


Вопрос 3. Второе уравнение Максвелла в интегральной и дифференциальной формах.

Второе уравнение Максвелла является

обобщением закона индукции Фарадея, который формулируется следующим образом: если замкнутый контур Г пронизывается переменным магнитным потоком Ф, то в контуре возникает ЭДС е, равная скорости изменения этого потока:

Знак минус в правой части формулы (1.34) означает, что возникающая в контуре ЭДС всегда как бы стремится вос­препятствовать изменению потока, пронизывающего данный кон­тур. Это положение известно под названием "правило Ленца".

Соотношение (1.37) сформулировано для контура конечных размеров и называется вторым уравнением Максвелла в интегральной форме. Максвеллом это уравнение было сформули­ровано также в дифференциальной форме.

Вопрос 4. Третье уравнение Максвелла в интегральной и дифференциальной формах.

Третье уравнение Максвелла является обобщением закона Гаусса на случай переменных процессов. Закон Гаусса связывает поток вектора электрического смещения через произвольную замкнутую поверхность S с зарядом Q, сосредоточенным внутри этой поверхности:

где dS = n o dS ; n 0 - орт внешней нормали к поверхности S.

Подставляя (1.41) в (1.40), получаем

Уравнение (1.43) обычно называют третьим уравнением Максвелла в интегральной форме. Для перехода к диффе­ренциальной форме

Это равенство должно выполняться при произвольном объеме V , что возможно только в том случае, если

Вопрос 5. Четвёртое уравнение Максвелла в интегральной и дифференциальной формах.

Четвертое уравнение Максвелла в интегральной форме сов­падает с законом Гаусса для магнитного поля, который можно сформулировать следующим образом. Поток вектора В через любую замкнутую поверхность S равен нулю, т.е.

Это означает, что не существует линий вектора В , которые только входят в замкнутую поверхность S (или, наоборот, только выходят из поверхности S): они всегда пронизывают ее (рис. 1.9).

Уравнение (1.46) называют четвертым уравнением Макс­велла в интегральной форме. К дифференциальной форме урав­нения (1.46) можно перейти с помощью теоремы Остроградского-Гаусса так же, как это было сделано в случае третьего уравнения Максвелла. В результате получим

div В = 0, (1.47)

Уравнение (1.47) представляет собой четвертое уравнение Макс­велла. Оно показывает, что в природе отсутствуют уединенные магнитные заряды одного знака. Из этого уравнения также следует, что линии вектора В (силовые линии магнитного поля) являются непрерывными.

Система уравнений Максвелла включает в себя четыре основных уравнения


, (3.2)


, (3.3)


. (3.4)

Эта система дополняется тремя материальными уравнениями, определяющими связь между физическими величинами, входящими в уравнения Максвелла:

(3.5)

Вспомним физический смысл этих математических фраз.

В первом уравнении (3.1) утверждается, что электростатическое поле может быть создано только электрическими зарядами.В этом уравнении- вектор электрического смещения, ρ - объемная плотность электрического заряда.

Поток вектора электрического смещения через любую замкнутую поверхность равен заряду, заключенному внутри этой поверхности.

Как свидетельствует эксперимент, поток вектора магнитной индукции через замкнутую поверхность всегда равен нулю (3.2)

Сопоставление уравнений (3.2) и (3.1) позволяет сделать вывод о том, что магнитные заряды в природе отсутствуют.

Огромный интерес и важность представляют уравнения (3.3) и (3.4). Здесь рассматриваются циркуляции векторов напряженности электрического () и магнитного () полей по замкнутому контуру.

В уравнении (3.3) утверждается, что переменное магнитное поле () является источником вихревого электрического поля ().Это не что иное, как математическая запись явления электромагнитной индукции Фарадея.

В уравнении (3.4) устанавливается связь магнитного поля и переменного электрического. Согласно этому уравнению магнитное поле может быть создано не только током проводимости (), но и переменным электрическим полем.

В этих уравнениях:

- вектор электрического смещения,

H - напряженность магнитного поля,

E - напряженность электрического поля,

j - плотность тока проводимости,

μ - магнитная проницаемость среды,

ε -диэлектрическая проницаемость среды.

    1. Электромагнитные волны. Свойства электромагнитных волн

В прошлом семестре, завершая рассмотрение системы уравнений классической электродинамики Максвелла, мы установили, что совместное решение двух последних уравнений (о циркуляции векторов и) приводит к дифференциальному волновому уравнению.

Так мы получили волновое уравнение «Y» волны:


. (3.6)

Электрическая компонента y – волны распространяется в положительном направлении оси X с фазовой скоростью


(3.7)

Аналогичное уравнение описывает изменение в пространстве и во времени магнитного поля y – волны:


. (3.8)

Анализируя полученные результаты, можно сформулировать ряд свойств, присущих электромагнитным волнам.

1. Плоская «y» - волна является линейно поляризованной поперечной волной. Векторы напряженности электрического (), магнитного () поля и фазовой скорости волны () взаимно перпендикулярны и образуют «правовинтовую» систему (рис.3.1).

2. В каждой точке пространства компонента волны H z пропорциональна напряженности электрического поляE y:


Здесь знаку «+» соответствует волна, распространяющаяся в положительном направлении оси X. Знак «-» - в отрицательном.

3. Электромагнитная волна движется вдоль оси X с фазовой скоростью


Здесь

.

При распространении электромагнитной волны в вакууме (ε = 1, μ = 1) фазовая скорость


Здесь электрическая постоянная ε 0 = 8.85 · 10 -12

магнитная постоянная μ 0 = 4π · 10 -7


.


.

Совпадение скорости электромагнитной волны в вакууме со скоростью света стало первым доказательством электромагнитной природы света.

В вакууме упрощается связь напряженности магнитного и электрического полей в волне.


.

При распространении электромагнитной волны в диэлектрической среде (μ = 1)

и

.

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю (см. (137.3)), а циркуляция вектора Е B оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля

Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D (см. (89.3)):

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью , то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак,полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):

D = 0 E ,

В=  0 Н,

j =E ,

где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид

т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса можно представитьполную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла - интегральная

идифференциальная - эквивалентны. Однако когда имеютсяповерхности разры­ва - поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

D 1 n = D 2 n , E 1 = E 2 , B 1 n = B 2 n , H 1  = H 2 

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн - перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3 10 8 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D , Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле. Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.