Что такое абразивный материал. Что такое абразивный инструмент? Использование природного сырья

Бани мира

Человечество знало об абразивах в течение многих тысячелетий. Люди пользовались помощью камней и песка, чтобы сформировать и заточить ножи, копья и наконечники стрел и рыболовных крючков. Первым абразивом был песчаник, в котором роль действующего вещества играли мельчайшие зерна кварца. Вплоть до открытия способов обработки металла этот материал абразивный обусловил возможность развития всего человечества, так как у людей тогда попросту не было других способов делать инструменты для работы и оружие.

Что это такое с физической точки зрения

Обычно абразивы являются очень твердыми полезными ископаемыми, которые располагаются в верхнем краю шкалы твердости Мооса - от кварца до алмаза. Но даже мягкие материалы могут выполнять эту функцию. Губки, пищевую соду и фруктовые косточки можно с полным на то основанием называть абразивами. С ними мы сталкиваемся ежедневно, и значение их в повседневной жизни человека велико.

В каких процессах они могут использоваться?

Зачастую называется так не из-за его физических свойств, а из-за особенностей использования. Существует несколько классов таких процессов. В частности в пескоструйной машине может быть использовано наибольшее количество материалов, которые в обычных условиях выраженными абразивными свойствами не обладают. Это оборудование использует мощный поток воздуха или воды, в котором с огромной скоростью движутся мелкие частицы каких-то веществ. В некоторых случаях применяется сетка абразивная, играющая роль фильтра-измельчителя.

Пескоструйные машины используются для полировки и окончательной доводки деталей и готовой продукции. При этом может браться фактически любой материал абразивный: от скорлупы орехов и косточек плодовых культур, раковин моллюсков и прочей органики до мельчайших кусочков стали, шлака, стекла или даже пищевой соды.

Основные компоненты

Кварцевый песок является самым популярным абразивом для пескоструйной обработки мостов и других стальных конструкций. При этом происходит очень эффективная очистка от ржавчины, что значительно повышает долговечность инженерных сооружений. Этот процесс требует абразивов с высокой плотностью. Как правило, очистка металлических конструкций предполагает использование сжатого воздуха. Он исполняет роль ускорителя частиц и не оказывает дополнительного корродирующего воздействия.

Впрочем, в некоторых случаях может использоваться и вода. В частности при очистке бетонных сооружений. Практически все конструкции, построенные в зоне прибрежной полосы, периодически в этом нуждаются. Дело в том, что на их поверхности со временем нарастает толстый слой соли и прочих агрессивных соединений. Пресная вода, в которую предварительно добавили соответствующий материал (абразивный), не только убирает их с бетона, но и производит «обессоливание». Опять-таки, это мероприятие значительно повышает срок службы строений.

Полировка готовых изделий

Полировка - вот важнейший процесс, в котором абразивы востребованы крайне широко. Как правило, для доведения до совершенства готовых изделий или каких-то деталей применяют специальные пасты или мягкие диски, а также соединения на основе синтетических смол. Востребована даже простая абразивная губка. Оксид церия, алмаз, кварц, оксид железа и окиси хрома - соединения, которые на сегодняшний день используются чаще всего.

Новакулит (плотная кремнистая порода) - также хорошее сырье для производства полировочных материалов. Оксид церия является наиболее распространенным минералом, используемым для полировки стекла. Это соединение его не царапает, но придает особую гладкость и блеск. В последние годы, однако, карбид кремния и искусственные алмазы для этого применяют чаще. На их основе производится особо дорогая и эффективная Она очень хорошо подходит для обработки особо «капризных» материалов.

Использование магнитных полей

В последние годы все чаще и шире в промышленности начинают практиковать процесс абразивного затачивания. Для этого используется не вода под давлением и не сжатый воздух: мельчайшие частицы абразивов парят в мощном магнитном поле, которое и формирует «точильный круг». Этот метод применяется в точном машиностроении, так как с его помощью можно отполировать или заточить те детали, которые в обычных условиях обрабатывать слишком дорого и/или долго. В качестве абразива чаще всего применяют соединения алюминия с теми металлами, которые обладают этим свойством.

Магнитореологические методы полировки

При реологическом методе полировки «физический» абразивный инструмент вообще не используется. Материалы смешиваются с жидкостями, в толще которых они движутся под действием электрических полей. Этот метод во многом схож с описанным выше, он также используется для обработки некоторых деталей в точном машиностроении и подобных отраслях промышленности.

Вообще, в последние годы в производстве все чаще начинают использовать абразивы, предварительно смешанные с жидкостями или синтетическими смолами. Хороший пример - увлажненная абразивная паста ГОИ на основе Она известна уже давно, но только в последние годы на нее обращают особое внимание. Причина проста - низкая стоимость этого соединения и его высокая эффективность при полировке. Кроме того, абразивная паста мягко действует на обрабатываемый материал, не царапая и не повреждая его.

Абразивные круги для УШМ («болгарок»)

Их применяют не только для полировки. Абразивами еще можно разрезать особо прочные материалы. Для этого пользуются тонкими шлифовальными кругами, сделанными на основе оксида алюминия и фенольных смол. В редких случаях применяется металлический абразивный диск. Такие инструменты незаменимы в частности при добыче мрамора в карьерах. Дело в том, что этот минерал очень плотный, плохо поддается распиливанию обычными пилами.

Как мы уже говорили, для распиливания используют оксид алюминия, карбид кремния, искусственные алмазы и карбид бора. Из них может быть сделан абразивный диск, из них же формуют специальные пилы для особо прочных материалов.

Основные инструменты, используемые для промышленности

Таким образом, эти соединения необходимы для затачивания, полировки, разрезания материалов. Современная промышленность чаще всего использует абразивный инструмент искусственного происхождения. Причина этого - сравнительно низкая стоимость синтетики. Соединения природного происхождения намного дороже. К их числу относится неоднократно упомянутый нами оксид алюминия, а также карбид кремния, двуокись циркония и так называемые суперабразивы (алмаз или нитрид бора).

Исключения редки и представлены в основном корундом. Он очень дорог, да и применение его в производстве достаточно ограниченное. В еще более редких случаях используют природные алмазы, непригодные для огранки ввиду предельно малых размеров или структурных дефектов.

Эволюция промышленных абразивов

История промышленных абразивов для шлифовальных кругов началась с природных минералов - кварца и кремния, а также корунда. Именно последний, к слову сказать, впервые и получил название «наждак». Это был первый Отказ от природных минералов начался еще в первой половине двадцатого века и был практически полностью завершен к его концу. И дело тут было не только в дороговизне природных материалов. Дело в том, что все они обладают строго определенными свойствами, которые изменить уже никак не получится. Синтетические же абразивы, созданные при определенных условиях, могут быть совершенно иными и лучше подходить для решения каких-то нетипичных задач.

К примеру, посредством новых технологий может быть создано соединение с формой частиц, напоминающих щепку. Такой материал идеален для нанесения на поверхность полировочных кругов. Кроме того, можно создавать совершенно новые материалы, комбинируя, к примеру, оксид титана с соединениями алюминия. Эти абразивы идеальны для обработки особо твердых поверхностей.

Когда произошел «абразивный прорыв» в промышленности?

Современное производство абразивов, включающее выпуск шлифовальных кругов и наждачных шкурок, сложно описать из-за массы товарных знаков и патентов, которые во многих случаях описывают один и тот же продукт. Разгадка подобных коллизий проста - из-за мельчайших различий в химическом составе можно регистрировать новую товарную марку. Но что служит основой для синтетических абразивов, и когда промышленность получила возможность их массового применения?

Действительно знаменательным событием стало открытие карбида кремния - минерала, не найденного в природе. Создание синтетического оксида алюминия в 1890-х годах лишь стимулировало начало исследований в этой области. К концу 1920-х синтетический оксид алюминия, карбид кремния, гранат и корунд были главными промышленными абразивами.

Но действительный прорыв произошел в 1938 году. Именно тогда стало возможным получать химически чистый оксид алюминия, который сразу же нашел широчайшее применение в машиностроении. Вскоре выяснилось, что смесь двуокиси циркония и оксида алюминия идеально подходит для сложных работ в области резки особо твердых сортов металлов. Это действительно уникальный абразивный порошок: он сохраняет высокую эффективность, но при этом сравнительно дешев. Сегодня пальму первенства все также держит синтетический оксид алюминия, сохранивший оригинальную микрокристаллическую структуру бокситных исходных материалов. В частности так был создан уникальный Cubitron™, а также абразивы на основе керамики под маркой SolGel™.

О «лучших друзьях девушек»

Природный алмаз - наиболее старый Он стал популярным в 1930 году. Тому было сразу две причины. Во-первых, до того года объемы добычи алмазов были просто ничтожны и физически не могли покрывать возрастающие потребности промышленности. Во-вторых, в связи с острым ощущением надвигающейся войны многие страны стали экстренно искать способы обработать с помощью машин. Это вещество до сих пор используется в производстве сердечников бронебойных подкалиберных снарядов.

Проблема была в нереальной твердости данного материала, который абразивная обработка просто не брала. Исследование, проведенное в 1960-х годах компанией General Electric, привело к появлению синтетических алмазов. В конечном счете изыскания в этой области приводят к открытию кубического нитрида бора, CBN. Это соединение, имеющее твердость алмаза, широко используется в производстве других абразивов, так как с его помощью можно буквально размалывать в пыль твердые сорта стали.

Конечно, все эти абразивные вещества, помимо всех своих замечательных свойств, имеют один огромный недостаток - стоимость. Недавним исключением является абразив Abral, синтезированный европейским концерном Pechiney. Эта компания разработала своеобразный «заменитель алмазов», который, мало уступая им в твердости, значительно выигрывает в цене.

Но не только сами абразивы двигали промышленность вперед. Огромное значение имели материалы, используемые в качестве основы для их нанесения. В частности, когда был создан бакелит, появилась возможность производства более легких и вместе с тем долговечных шлифовальных кругов. Они равномернее стачивались, а абразивы лучше распределялись в их внутреннем объеме. Это обеспечивало значительно лучшее качество обработки материалов.

Наждачные шкурки

Наждачные шкурки в качестве основы используют искусственные и натуральные ткани, пленки и даже обычную бумагу, армированную ткаными волокнами. В некоторых случаях «наждачку» получают, пропитывая раствором на основе фенольных смол или воды (с добавлением абразивов, конечно) ткань. Так же может быть получена абразивная губка. Такие инструменты широко известны практически всем, с ними мы сталкиваемся постоянно и ежедневно.

Мы описали немало сфер применения этих материалов. Но факт заключается в том, что с большинством из них среднестатистические обыватели в своей жизни не сталкиваются вообще. Так, многие знают о брусках или той же самой наждачной бумаге, кем-то использовалась сетка абразивная. Но мало кому известны конкретные разновидности веществ, которые используются, к примеру, производителями подшипников или высококачественных ножей из сверхтвердых сортов стали. Последние, к слову говоря, в домашних условиях заточить практически нереально. «Точилки» для них нужны совершенно особые.

Для каких задач подходит тот или иной абразив?

Для специфических нужд необходимы суперабразивы, о которых мы уже коротко упоминали выше. Они также представлены в виде наждачных шкурок, абразивных щеток, дисков и кругов. Так, при производстве ножей из стандартных сортов стали производители пользуются оксидом алюминия и карбидом кремния. Массовое производство же обычно требует более широко использования пескоструйных машин: нержавеющая сталь, выпуск шарикоподшипников и массовая обработка особо твердых сортов древесины. Впрочем, в большинстве случаев промышленники остаются верны «старому-доброму» оксиду алюминия. Этот дешев, но при этом весьма эффективен.

В завершение

Абразивы прямо или косвенно играют роль в производстве практически всех вещей, с которыми люди сталкиваются повседневно. В частности без них невозможно создание корпусов из которые столь популярны у поклонников «яблочной» продукции. Не забывайте, что простой абразивный камень «болгарки» или даже обычная наждачная бумага - плод деятельности многих поколений ученых и ремесленников, собиравших и систематизировавших свои знания на протяжении многих лет.

Компании, выпускающие различные виды абразивов, шлифовальные круги и наждачные шкурки, используют теоретические знания, которые присутствуют во многих смежных отраслях. Они руководствуются данными, полученными в ходе изучения керамики, широко практикуют прикладную химию, физику и металлургию. Абразивы всегда будут полезны, они - ключевая особенность современного производственного цикла многих предприятий.

Производство металлических изделий и конструкций - сложный процесс, предусматривающий несколько этапов. На заключительном изделия в обязательном порядке подвергаются обработке для придания им аккуратного вида. Чаще всего с этой целью используют абразивный инструмент. Это наиболее оптимальное решение для выполнения подобного рода задач. Ведь он обладает множеством возможностей для применения - его можно использовать для шлифовки, а также разрезания металлических и других изделий, на которые оказывается воздействие веществами повышенной твердости.

Эти частицы могут отличаться между собой происхождением, зернистостью и ценой. Наилучших результатов обработки можно добиться, используя инструмент с микрокристаллами неправильной формы. Но в первую очередь внимание нужно обращать на степень зернистости и свойства крупиц, которые определяют качество работы.

Что такое абразивный инструмент

Под абразивным инструментом принято понимать всё разнообразие инструмента, предназначенного для механической обработки различных поверхностей .

Самыми известными разновидностями этого инструмента являются алмазные и шлифовальные круги, шкурки и бруски . Сюда же можно отнести и другие изделия, выполненные из различных связующих и абразивных материалов - например, пемзу, корунд, наждак и др.

При более тщательном изучении этих устройств для заточки можно обнаружить у него такое полезное свойство, как самозатачиваемость . К примеру, любой абразивный материал, который используется для изготовления абразивных устройств, содержит сразу несколько слоев острых зёрен. Но по мере затупления и скалывания одних частиц абразива их сразу же заменяют другие. Примечательно, что с увеличением трения верхнего слоя абразивных приспособлений ускоряется и процесс его самозатачивания.

Иногда наблюдаются нарушения этого процесса, когда изделие самозатачивается не полностью. В этом случае стоит задуматься о том, чтобы произвести правку устройства, для чего нужно просто удалить верхний слой абразива. После этого инструмент приобретает надлежащую форму для эффективного выполнения своей задачи.

Сфера использования абразивной обработки

Основными пользователями рассматриваемого инструмента выступают предприятия, специализирующиеся на изготовлении деталей или их элементов . Благодаря абразивной обработке металла готовые изделия приобретают не только более эстетичный вид, но и требуемые качественные характеристики. В первую очередь в подобных приспособлениях нуждаются производства, занятые выпуском мелких деталей для нужд машиностроения , так как для этой отрасли очень важно, чтобы выпускаемая продукция в точности соответствовала чертежам.

Относящийся к рассматриваемой категории инструмент может использоваться для обработки изделий в виде автоматизированной линии или же вручную. Последний вариант часто используется в небольших мастерских, а вот для более крупных предприятий, занятых в серийном и массовом производствах уместнее всего использовать для финишной обработки изделий автоматические агрегаты.

Виды инструмента для заточки

За последние годы этот инструмент получил распространение во многих сферах. Его активно применяют в машиностроении, строительстве зданий, ремонте и других отраслях. Логично предположить, что каждый из его видов подойдет для выполнения только своих собственных задач. Есть инструменты, которые позволяют убрать шероховатости, с помощью других можно выполнить начисто шлифовку стен или пола. Поэтому понятно, почему с каждым годом в продаже появляется всё больше разновидностей такого рода инструмента. Всё их разнообразие можно представить в виде двух больших групп - жесткие и на гибкой основе.

Первая группа представлена такими приспособлениями, как болгарки, станки и прочие виды ручного и стационарного электрооборудования.

Благодаря наличию множества режимов скорости вращения и высокой прочности этот инструмент позволяет быстро и эффективно выполнять шлифовку большого количества изделий за короткий срок. Его активно используют для шлифовки, выравнивания, заточки режущих кромок, а также разрезания твердого материала.

Дополнительно относящиеся к этой группе изделия можно разделить на несколько типов кругов:

  • заточные;
  • шлифовальные;
  • зачистные;
  • отрезные.

Каждое изделие обладает своими характеристиками и свойствами. Шлифовальные изделия используются для обработки изделий из камня, дерева и металла, когда нужно изменить их форму или устранить шероховатости. Особенно часто возникает необходимость использования этой продукции при производстве и ремонте домов и квартир.

Поскольку эти инструменты могут использоваться в самых разных направлениях хозяйственной деятельности, при их выборе необходимо ориентироваться на текущие задачи и на основании этого выбирать тип профиля круга, который может быть прямым, в виде чаши или тарельчатым. Основным критерием выбора следует рассматривать удобство формы.

Отрезные изделия позволяют выполнять разрезание изделий из керамики, кирпича, гипсокартона, дерева, камня и др. Эти изделия превосходят все остальные по таким рабочим параметрам, как точность, скорость и простота обработки, не требующая приложения больших усилий.

Заточные круги получили широкое распространение в качестве эффективного инструмента для затачивания поверхностей станков, пил, ножниц и ножей. Применение этого инструмента позволяет сэкономить немало времени на обслуживании другого инструмента в производстве и сельском хозяйстве.

Зачистные изделия используются для черновой обработки изделий из дерева, камня и стали, когда нужно придать им определенную форму или избавить от серьезных дефектов. Особенно востребованы эти изделия в цехах металлообработки, где используются для удаления сварочных порезов, капель, швов и прочих серьезных дефектов.

Инструмент на гибкой основе

Наряду с жёстким инструментом производители выпускают абразивы на гибкой основе. Наиболее востребованной их разновидностью является обычная шкурка, которая может иметь различную плотность. С ее помощью можно обеспечить высокоточную и более эффективную обработку изделий из камня, синтетики, металла и дерева. Наиболее распространен вариант, имеющий бумажную или тканевую основу.

Абразивные круги выполнены в виде очень тонких листков и имеют посадочные отверстия в центре с обрамлением в форме металлической втулки. Для создания таких дисков используют разные частицы, наполнители в сочетании со специальной связующей массой, в качестве которой может выступать вулканитовая или бакелитовая. В соответствии с технологией, все перечисленные компоненты после перемешивания отправляются в специальные формы, после чего подвергаются прессованию.

Абразивные круги бывают двух видов:

  • шлифовальные;
  • отрезные.

Первые предназначены для резки твердых неметаллических и металлических материалов, в том числе мрамора, кирпича, гипсокартона, сплавов цветных металлов и других. Шлифовальные круги чаще всего используют для шлифования и заточки деталей, выполненных из тех же самых материалов.

Оба вида абразивных кругов одинаково востребованы на производстве. Их используют для обработки на соответствующего типа станках - шлифовальных и отрезных.

Необходимый результат при использовании абразивных кругов получают путем воздействия острыми вершинами абразивных частиц, которые во время вращения круга врезаются в обрабатываемую поверхность. Как правило, эти частицы имеют размер от 100 до 2000 мкм. Следует заметить, что с увеличением размера и твердости зерен абразива повышается и производительность круга.

Тканевая шлифовальная шкурка также активно применяется на промышленных предприятиях. Широкое распространение она получила в таких сферах, как электронная и строительная, деревообрабатывающая и мебельная промышленность, а также авиация и металлургия.

Шлифовальная шкурка предназначена для выполнения чистовых, получистовых и отделочных операций. Помимо этого она незаменима при внутренней, безцентровой, плоской и наружной шлифовке деталей.

Шлифшкурка - это универсальный абразивный материал, который можно использовать для обработки любых материалов. Чаще всего же она применяется для шлифования мрамора, кожи, бронзы, стекла, конструкционных сталей, дерева, титановых сверхпрочных сплавов.

Обладая прекрасной эластичностью, шлифовальные шкурки прекрасно подходят для обработки криволинейных сложных поверхностей, а также для размерного и декоративного шлифования.

Брусок для заточки ножей и шлифования

Большой популярностью в качестве абразивного инструмента пользуются и бруски для заточки ножей и шлифования. Основное их назначение - заточка изделий, осуществляемая вручную. Тем, кто собирается использовать этот инструмент впервые, хочется дать совет - выбирайте максимально длинную модель, а вот на ширину внимание можно не обращать.

Производители выпускают бруски для заточки разных типов. Наиболее распространены бруски натуральные. В последнее время у них появилась альтернатива - синтетические бруски.

Виброгалтовка и абразивы для неё

Виброгалтовкой принято называть влажную обработку изделий с применением рассматриваемого инструмента, для выполнения которой используется специальное оборудование, которое в своем составе должно иметь подвод и устройство стока воды.

Важной характеристикой, которой должны обладать машины, предназначенные для проведения виброгалтовки, является наличие у них техпроцесса . Для выполнения виброгалтовки традиционно используются абразивы многоразового назначения. Как показывает практика, одного материала достаточно на несколько месяцев активной эксплуатации.

Процессы, относящиеся к абразивной обработке

Чаще всего к этому виду инструмента прибегают, когда возникает необходимость придать поверхностям деталей определённые свойства, чего невозможно сделать, используя другие металлообрабатывающие станки и инструменты. Для приведения изделий к необходимым параметрам они могут подвергаться следующим процессам абразивной обработки:

  • Полирование;
  • Притирка и доводка;
  • Хонингование и др.

- разновидность обработки, в процессе которой выполняется шлифовка поверхностей и затачивание ножей и режущих инструментов. Подобная работа осуществляется с помощью твердых типов инструмента - брусков, кругов или сегментов.

Полирование - процедура, в процессе которой поверхности приобретают идеальную гладкость. Подобный вид обработки осуществляется с помощью специальных кругов из фетра или сукна, имеющих на поверхности предварительно нанесенную абразивную пасту или смоченный жидкостью порошок.

Доводка - процесс абразивной обработки, позволяющий обеспечить изделиям более точные размеры, а также их максимально точную состыковку между собой. Этот рабочий процесс выполняется с помощью притира - инструмента, содержащего на поверхности мелкокристаллические абразивы, смоченные водой.

Абразивный инструмент широко востребован не только в промышленности, но и в бытовой сфере. Ведь часто возникают ситуации, когда необходимо придать изделиям необходимые эстетические свойства и рабочие характеристики.

Проще всего этого добиться с помощью такого рода инструмента, который сегодня производители выпускают в различных вариантах в зависимости от его назначения. Это предопределяет задачи, для решения которых он может использоваться. Именно это и должно быть основным критерием выбора такого инструмента. Но нужно учитывать и другие факторы, прежде всего, показатели твердости материала, для обработки которого приобретается изделие для заточки. Только в этом случае работа будет выполнена быстро и эффективно.

И зачистки различных поверхностей обычно используют специальные материалы, которые называются абразивами. Это могут быть приспособления разной конструкции и формы, но их объединяет шероховатое покрытие или же полностью зернистая структура. К примеру, и напильник - классические абразивы. Это также могут быть и механические устройства, реализующие функцию обработки поверхностей в автоматическом режиме без мышечного усилия.

Абразивные материалы

В природе можно встретить немало естественных абразивов, которые отличаются зернистой или пористой структурой. К таким можно отнести минералы, среди которых гранат, кварц, некоторые разновидности железняка, пемза и т. д. Некоторые из названных пород используются цельными на производствах, а другие применяются в переработанном виде. К примеру, стойкие в износе и трении порошки - те же абразивы. Это в большинстве случаев измельченные горные породы или металлические частицы, которые могут по-разному применяться в доработке изделий. Но здесь стоит перейти и к другой группе абразивных материалов - синтетической. В нее входит минеральный шлак, стальная дробь и др. С помощью таких материалов можно выполнять наиболее сложные задачи полировки и зачистки.

Абразивные инструменты

В отличие от абразивных материалов, инструменты представляют собой готовое к выполнению шлифовальных операций приспособление. Наиболее распространенным изделием такого типа являются насадки для шлифовальных и отрезных аппаратов. К таким относят пилы, болгарки, всевозможные резчики и в качестве рабочей головки которых используется абразив. Круги, пожалуй, являются самым эффективным обрабатывающим компонентом. Причем их эффективность обуславливается конструкционно наиболее выгодным размещением в составе электроинструмента.

Также популярны в производствах используемые на станках. С их помощью реализуется поточная обработка типовых изделий - зачастую прямо на конвейере. Теперь стоит рассмотреть бытовые абразивы. Это может быть и тот же напильник с или же абразивный камень в форме бруска, которым затачиваются лезвия режущего инструмента.

Свойства абразивов

Качественный абразив характеризуется такими показателями, как износостойкость, твердость, отсутствие взаимодействий с химическими веществами и т. д. При этом твердость и стойкость к износу не всегда свидетельствуют о том, что абразив способен быстро ликвидировать ненужные слои с поверхности. Инструмент может быть прочным и устойчивым к повреждениям, что обуславливается высокой плотностью и содержанием в структуре мелкофракционного зерна. Но слишком твердые шлифовальные абразивы, как правило, дольше обрабатывают целевые заготовки. И, напротив, крупное зерно способствует ускоренному выполнению той же шлифовки, но у него есть два недостатка. Во-первых, крупная фракция подразумевает быстрый износ. Во-вторых, с помощью такого абразива можно рассчитывать только на грубую обработку, исключающую полировочный эффект.

Виды абразивной обработки

Простейшие техники обработки абразивами подразумевают использование немеханизированных ручных материалов. В основном это бруски из горных пород, которые применяются в доработке податливых поверхностей - например, древесины. Более технологичные способы предусматривают работу с ручными электрическими аппаратами. Это небольшие шлифовальные и полировочные машинки, допускающие использование различных по характеристикам насадок. В профессиональных сферах также применяется абразив для пескоструя, который подается через специальное сопло. типа работает за счет подачи воздуха под большим давлением. В процессе выполнения операций струя, нагнетаемая компрессором, буквально выдувает на высокой скорости частицы абразива, воздействуя на целевую поверхность. Несущие потоки могут также формироваться и за счет воды, но для ее хранения потребуются дополнительные емкости.

Области применения абразивов

Все абразивы рассчитываются на выполнение, по большому счету, одинаковых задач. Они заключаются в снятии определенного слоя материала с той или иной поверхности. Другое дело, что сама ликвидация ненужного покрытия может преследовать разные цели - придание нужной формы изделию, устранение неровностей, зачистка и т. д. Данные операции могут применяться и в быту, и в мастерских разного рода, а также в строительстве и на производствах. Так, в бытовом хозяйстве нередко требуется регулярное шлифование деревянных напольных покрытий. Для паркета и некоторых видов ламината используется полировочный абразив. Материал в виде песчаных и металлических частиц используют в качестве расходника для пескоструя. Данный высокоэффективный метод нашел применение в работе автомастерских. Например, пневматические аппараты используют для зачистки старых лакокрасочных покрытий. Мощные агрегаты, работающие от компрессоров, с помощью распыления металлической крошки способны удалять застоявшиеся следы коррозийного поражения и даже окалину.

Заключение

Сегодня практически не существует альтернативных по отношению к абразивам способов шлифования и зачистки поверхностей. Можно упомянуть разве что высокоточные способы резки, но их функцию можно заменить грубой обработкой тем же пескоструем. С точки зрения производственных процессов на многих крупных предприятиях абразивы - это и вовсе незаменимый технологический этап, позволяющий придавать изделиям необходимые параметры. И если в строительстве мастера могут иметь дело с трудоемкими, но грубыми по своему характеру способами зачистки и шлифования, то в промышленности реализуются операции точного формования. Причем они выполняются с твердотельными каменными и металлическими структурами, что требует применения уже специальных абразивных машин и станков.

Фото из открытых источников

Абразивный инструмент представляет собой инструмент, в котором имеются абразивы. За счёт него можно выполнять механическую обработку различных изделий. Состоит такой инструмент из нескольких зерен абразивов, которые связываются при помощи определенного вещества. Изготавливают его преимущественно из искусственных материалов. Но встречаются инструменты и из натурального материала.

Разновидности абразивного инструмента

  1. Фиксированный. Это могут быть круги различных типов, в том числе кольца, а также бруски и так далее. Подобный инструмент получил название "шлифкруги". В составе него находятся абразивные материалы с определённой зернистостью, а также элементы, которые придают прочность. Круги шлифовальные могут различаться по размерам, твердости.
  2. Гибкий инструмент. Это может быть шлифовальная шкурка, сетчатые диски, щетки из специальных волокон. Такой инструмент также отличается качественной обработкой поверхности, при этом он является гибким. Подобный инструмент пригодится при работе с труднодоступными местами.
  3. Свободный абразив, поспи. Абразивные пасты - это смеси абразивных материалов с неабразивными частицами разной густоты. Это могут быть жидкие или твердые брикеты. Такие составы используют для полирования, притирки и других операций.

Шлифовальные круги используются преимущественно для выполнения шлифовки и заточки. Форму с размерами круга необходимо подбирать в зависимости от того, какое устройство имеет станок и обрабатываемый инструмент.

Для обработки режущих инструментов используют круги, имеющие керамическую связку. Плотностью круга для шлифовки принято называть сопротивление связки с выравниванием зерен. Под структурой следует понимать структуру абразивного инструмента. При заточке инструмента для резки применяются круги, имеющие открытые или среднее структуры. Всё это делает более простым удаления стружки из области обработки и уменьшает количество дефектов на инструменте. Такие круги являются удобными в использовании и недорогими по стоимости. Так что приобретение их целесообразно.

Купить абразивный инструмент от российских и европейских производителей вы сможете в магазине "Петродуал". С помощью абразивных инструментов можно выполнять различное количество операций по обработке. При изготовлении такого инструмента применяются различные связки.

Определение и классификация. Абразивные материалы (от лат. abrasio - соскабливаю) - вещества, обладающие высокой твердостью и используемые в свободном (материалы) или связанном (инструменты) состоянии для механической обработки поверхности различных изделий. В современном представлении абразивные материалы (абразивы) - это, как правило, сыпучие материалы, полученные путем дробления и рассева природных кристаллических минералов или искусственных (синтетических) материалов. Их называют еще шлифовальные материалы, шлифзерно, абразивное зерно и т. п. Принцип их действия заключается в удалении части обрабатываемой поверхности острыми выступами абразива. При этом от абразивных частиц, имеющих, как правило, кристаллическую структуру, откалываются микроскопические крупицы, образуя новые рабочие кромки.

Абразивные материалы и инструменты по способу применения подразделяются на три группы:

свободные абразивы , используемые в свободном состоянии в виде зерен, порошков для пескоструйной или ручной обработки поверхности и в составе абразивных паст, суспензий и гелей;

абразивы в связке , используемые в виде зерен, скрепленных связкой в различные по форме и назначению абразивные инструменты на жесткой основе (могут быть в виде дисков, кругов, брусков и т. п.);

абразивные покрытия получают нанесением на гибкую основу (ткань, бумагу и др.) абразивных зерен, закрепленных на ее поверхности с помощью клеев и смол.

Связка должна исключать преждевременное выкрашивание отдельных зерен, их залипание и не должна захватывать частицы срезанного материала. Связки могут быть металлическими и неметаллическими.

Металлические связки применяют только для инструментов, в которых абразивом служит природный или синтетический алмаз. Рабочие элементы абразивного инструмента в этом случае получают методом порошковой металлургии или вплавляя зерна в поверхность металла.

Неметаллические связки могут быть органического (вулканическая или бакелитовая) или неорганического (керамическая) происхождения. Инструменты на основе органической связки имеют тепловые ограничения, что требует осторожного использования охлаждающих жидкостей, и подвержены воздействию щелочей. Но эластичность органики делает незаменимым такой инструмент для операций по снятию больших припусков (например, при обдирке). Бакелитовая связка обозначается на инструментах русской буквой Б или латинской В, вулканитовая связка - русской буквой В или латинской R.

Керамическую связку получают из глиняных масс, которые в процессе обжига превращаются в стекло или фарфор. Она обладает высокой огнеупорностью, химической стойкостью и водостойкостью. К недостаткам следует отнести хрупкость и, как следствие, непригодность для работ с высокой ударной нагрузкой. Однако керамическая связка хорошо «держит» форму, что важно при высокоточном шлифовании, имеет высокую износостойкость и выдерживает высокие температуры. На отечественном инструменте керамическая связка обозначается буквой К, а на импортном - буквой V.

Точность размеров и геометрической формы абразивного инструмента характеризуется тремя классами - АА, А и Б. Для менее ответственных операций абразивной обработки применяют абразивный инструмент класса Б. Более точным и качественным является абразивный инструмент класса А. Для работы в автоматических линиях, на высокопрецизионных и многокруговых станках применяют прецизионный абразивный инструмент класса АА, отличающийся наибольшей точностью геометрических параметров, однородностью зернового состава, уравновешенностью абразивной массы и изготавливающийся из лучших сортов шлифовальных материалов.

Абразивные материалы используются в процессах шлифования, полирования, хонингования, суперфиниширования, разрезания материалов и широко применяются в заготовительном производстве и окончательной обработке различных металлических и неметаллических материалов.

Разновидности абразивных материалов . Абразивные материалы могут быть природными и синтетическими. К природным абразивным материалам относятся:

алмаз природный - кристаллическая модификация углерода, т. е. состоит из одного химического элемента. В природе встречается в виде небольших кристаллов различной формы от 0,005 до нескольких карат (карат равен 0,2 г). Алмаз обладает наибольшей твердостью из всех известных в природе материалов. Твердость по минералогической шкале Мооса - 10. На мировом рынке различают два вида алмазов - ювелирные и технические. Последние применяются в виде порошков, а также отдельных кристаллов, которым путем огранки придают нужную форму (резцы, фильеры);

корунд - горная порода, состоящая из кристаллического безводного глинозема (оксида алюминия) с примесями других металлов. Он более вязкий и менее хрупкий, чем алмаз, и обладает меньшей твердостью. Твердость корунда по минералогической шкале Мооса - 9. Применяется для изготовления шлифовальных и полировальных порошков, резки металла, твердых камней и стекла;

наждак - мелко- и тонкозернистая горная порода, в которой корунд находится в тесном срастании с другими минералами (магнетитом, сульфидами металлов). По абразивной способности незначительно уступает корунду. Твердость по шкале Мооса - 7...8. Наждак, содержащий до 60% корунда, используется в качестве природного абразивного материала. Легко измельчается и используется для изготовления абразивно-доводочных материалов, отделки лестничных ступеней, полов, тротуаров и самой дешевой наждачной бумаги;

кварц - природный минерал (кристаллический диоксид кремния Si02) и один из наиболее доступных абразивных материалов. Твердость по минералогической шкале Мооса - 7. На основе кварца изготовляют так называемую стеклянную шкурку;

пемза - тонкопористый и поэтому очень легкий (не тонет в воде) природный материал вулканического происхождения. Легко измельчается при сравнительно высокой твердости (по шкале Мооса - 6).

Синтетические абразивные материалы:

алмазы синтетические получают синтезом из графита при высоких давлениях и высокой температуре. Варьирование условий синтеза позволяет получать кристаллы разных размеров (до 4 мм), степени совершенства, чистоты, а следовательно, и с заданными физико-механическими характеристиками. Практически они имеют те же физические и химические свойства, что и природные алмазы. Выпускаются обыкновенной, повышенной и высокой прочности. Используются для обработки твердых сплавов, камня, стекла и цветных металлов;

нитрид бора (в США - боразон , в СНГ - эльбор и кубонит ) получают путем синтеза при высоких значениях давления и температуры. Кристаллическая решетка нитрида бора является алмазоподобной, т. е. она имеет такое же строение, как и решетка алмаза, но содержит атомы бора (44,3%) и азота (56,4%) и имеет несколько большие параметры. Нитрид бора по сравнению с алмазом имеет меньшую твердость, но более высокую теплостойкость (до 1200 °С) и нейтрален к железу, т. е. не вступает с ним в химическое взаимодействие. Из нитрида бора получают шлифпорошки и микропорошки, из которых затем изготовляют абразивно-доводочные и полировальные пасты («Эльбора», «Кубонита» и др.);

карбид бора представляет собой соединение бора с углеродом. Твердость и абразивная способность зерен карбида бора ниже, чем алмазов и зерен из нитрида бора, но выше, чем зерен из электрокорунда и карбида кремния. Карбид бора используется в порошках и пастах для доводки изделий из твердых материалов;

карбид кремния (карборунд) представляет собой химическое соединение углерода с кремнием. Имеет исключительно высокую твердость, уступая только алмазу и карбиду бора. Устойчив в различных химических средах, в том числе при высоких температурах. Кристаллы карборунда бесцветные и имеют алмазный блеск. Но технический карборунд в зависимости от содержания примесей бывает двух марок: зеленый (содержащий не менее 97% карбида кремния) и черный (95-97% карбида кремния). Зеленый карбид кремния по сравнению с черным более хрупкий, однако абразивная способность его примерно на 20% выше. Как абразивный материал карбид кремния применяется при шлифовании, для резания твердых материалов и заточки инструментов. Из карбида кремния производятся шкурки на бумажной и тканевой основах, шлифовальные круги и бруски на керамической, синтетической и органической основах;

электрокорунды (белый, нормальный, хромистый, титанистый, монокорунд и др.) представляют собой искусственно синтезированные корунды в результате термической обработки различного высокоглиноземистого сырья (бокситов). Используют для приготовления абразивно-доводочных материалов.

нитрид углерода - соединение азота с углеродом. Считается высококачественным абразивным материалом.

Свойства. Основными качественными характеристиками абразивных материалов являются форма и крупность абразивных зерен, их прочность, твердость, вязкость, хрупкость, абразивная способность, минеральный и гранулометрический (зернистость) составы.

Абразивное зерно представляет собой кристаллический осколок (кристаллит), состоящий из множества мелких кристаллов, режущей кромкой у которого является ребро. Абразивное зерно может иметь как приблизительно равные размеры по высоте, ширине и толщине (изометрическая форма), так и обладать пластинчатой, мечевидной и другими формами. Рациональной является изометрическая или близкая к ней форма зерна, так как каждое зерно является резцом. Наименее выгодная форма - игольчатая.

Зернистость характеризует размер и однородность абразивных материалов основной (преобладающей) фракции и выражается в метрической и дюймовой системах. В зависимости от величины зерен абразивные материалы подразделяют на группы и номера зернистости. При этом в разных странах маркировка осуществляется по-разному. В метрической системе крупность зерен порошка абразива характеризуется его номером. За номер порошка принимают размер ячейки сита в десятках микрон, на котором задерживается порошок. Если порошок проходит через сито с ячейками со стороной 500 мкм и задерживается на сите с ячейками в 400 мкм, то зернистость считается равной 400 мкм, хотя на самом деле это частицы с размерами в диапазоне от 400 до 500 мкм.

Согласно ГОСТ 3647 и 9206 шлифовальные материалы в метрической системе делятся на четыре группы:

Шлифзерно от № 200 до № 16;

Шлифпорошки от № 12 до № 4;

Микрошлифпорошки от М63 до М14;

Тонкие микрошлифпорошки от М10 до М5.

Буква М в обозначении номера означает, что крупность зерен указывается в микронах (мкм), а отсутствие буквы - что крупность указывается в десятках микрон. Еще одно из отличий этих обозначений состоит в том, что номер с буквой М означает максимальный размер частиц порошка абразива, а для номеров без буквы - наоборот, наименьший размер зерна, в то время как максимальный соответствует предыдущему номеру. Условное обозначение зернистости дополняют еще буквенным индексом, соответствующим процентному содержанию основной фракции (В - высокое, П - повышенное, Н - номинальное и Д - допустимое).

В дюймовой системе размеры отверстий в сите характеризуются числом меш (от англ. mesh - клетка, ячейка) - число отверстий сетки на один линейный дюйм. Чем выше номер в мешах, тем мельче материал. Точного перевода размера зерен в микронах в дюймовую систему нет.

Твердость абразивных материалов устанавливается методом вдавливания алмазной пирамиды в поверхность испытываемого материала (МПа) либо по различным шкалам, в том числе минералогической шкале твердости Мооса. По твердости абразивные материалы подразделяются на сверхтвердые, твердые и мягкие и делятся на 10 классов, причем твердость десятого (наивысшего класса) соответствует твердости алмаза.

Твердость абразивных инструментов по смыслу не совпадает с аналогичным понятием, определяющим свойства абразивных материалов и других твердых тел. Твердость абразивного инструмента характеризует прочность связи в нем абразивных зерен между собой. Поэтому из зерен самого твердого абразивного материала можно изготовить мягкие абразивные инструменты и, наоборот, из абразивного материала малой твердости можно изготовить достаточно твердые абразивные инструменты. Мягкими абразивными инструментами (в отличие от твердых) называют такие, из которых абразивные зерна легко выкрашиваются.

Твердость абразивных инструментов оказывает влияние на режущие свойства и кромкостойкость абразивного инструмента, а также на характер его изнашивания в процессе резания. Если прочность закрепления зерен в абразивном инструменте ниже прочности самого абразивного зерна (мягкий абразивный инструмент), то изнашивание происходит вследствие выкрашивания зерен и абразивный инструмент работает в режиме самозатачивания. Если же прочность абразивного зерна окажется ниже прочности его закрепления в инструменте (твердый абразивный инструмент), то изнашивание будет протекать частично за счет хрупкого разрушения, скалывания зерен и частично за счет их стирания с образованием площадок износа на зерне.

Получение абразивных инструментов требуемой твердости достигается соответствующей технологией их изготовления, устанавливающей соотношение абразивного зерна и связки: давлением при прессовании, температурой и длительностью термической обработки (обжига).

Абразивная способность характеризуется массой снимаемого при шлифовании материала до затупления зерен. По абразивной способности абразивные материалы располагаются в следующем порядке: алмаз, нитрид бора, карбид кремния, монокорунд, электрокорунд, наждак, кремень и др.

Разновидности абразивных инструментов . Диски получаются путем нанесения абразивного материала на сетчатую основу и используются для полирования и зачистки поверхностей. Жесткие сетчатые диски, изготовленные на основе стекловолокна и лавсана, пригодны для разрезки небольших деталей из дорогостоящих материалов. Если нанести абразивный материал на фибровую основу (целлюлоза, пропитанная хлористым цинком), то получится фибровый диск для зачистки и полирования.

Отрезные и шлифовальные круги изготовляют на бакелитовых, металлических и керамических связках (рис. 13.1). В качестве основы бакелитовой связки используется порошкообразная фенолформальдегидная смола и неорганические наполнители (криолит или пирит). Высокая прочность бакелитовой связки позволяет абразивному инструменту работать при высоких нагрузках и скоростях. В качестве абразива обычно используют белый и нормальный электрокорунд, их смеси, карбид кремния черный и зеленый, реже - карбид кремния.

13.1. Шлифовальные круги

Для снижения опасности разрыва круга при резке с большой частотой вращения в его тело вводят упрочняющий элемент в виде круглого диска из тонкой стеклянной сетки, которая сохраняет также форму и гибкость отрезного круга.

Существенной характеристикой абразивных кругов (в особенности отрезных) является допустимая величина окружной скорости, для чего используется несколько обозначений: цветная полоса, указание величины максимальной окружной скорости и числа максимальных оборотов. При допустимых окружных скоростях 25...35 м/с на круге наносится, как правило, белая полоса. Если ее нет, то будет приведено значение скорости и числа оборотов. Число оборотов является более существенной характеристикой, так как учитывает наружный диаметр круга. При окружной скорости 45...50 м/с полоса будет синяя, при 60 м/с - желтая, при 80 м/с - красная, а при 100 м/с - зеленая. Зеленая полоса дополнительно указывает на недопустимость использования круга на ручном инструменте («болгарке»).

Бруски представляют собой стержни из связки (керамической или бакелитовой) с распределенным в ней абразивом. Единой мировой классификации брусков нет. В отечественной промышленности бруски делятся по твердости:

На высокомягкие (ВМ1, ВМ2, ВМЗ);

Мягкие (Ml, М2, МЗ);

Среднемягкие (СМ1, СМ2, СМЗ);

Средние (С 1, С2, СЗ);

Среднетвердые (СТ1, СТ2, СТЗ);

Твердые (Tl, Т2);

Чрезвычайно твердые (ЧТ1, ЧТ2).

Шлифовальная шкурка (шлифшкурка, наждачная бумага), представляет собой измельченный абразивный материал, нанесенный одним или несколькими слоями на гибкую основу из бумаги, ткани или синтетического материала (рис. 13.2). Выбор основы обусловлен нагрузками при шлифовании. В качестве связующего вещества используются мездровый, костный, синтетические клеи и комбинированные составы. Для закрепления шлифовальной шкурки к инструменту на нижнюю часть основы может наноситься крепление («липучка»).

Рис. 13.2. Структура шлифовальной шкурки: 1 - крепление; 2 - основа; 3 - связка;

4 - защитное покрытие; 5 - абразив; 6 - дополнительное покрытие

Шлифовальные шкурки выпускаются двух типов: рулонные (Р) и листовые (Л). В зависимости от вида подложки и связующего шкурки могут быть водостойкими (пригодными для мокрого шлифования), неводостойкими , термостойкими , а в зависимости от числа слоев шлифовального материала - однослойными (О) или двухслойными (Д). Если рабочие слои шлифовального материала расположены на обеих сторонах гибкой основы, то такую шкурку называют двухсторонней.

Маркируются шлифовальные шкурки также как шлифзер- на и шлифпорошки по размеру абразивных зерен.

Для удобства использования шлифовальные шкурки объединены в группы посредством цветовой маркировки (табл. 13.1).

Таблица 13.1. Цветовая маркировка шлифовальных шкурок

Современные шлифовальные шкурки, поставляемые на рынки нашей страны, могут быть самоклеющимися и самосцепляющимися. Они отличаются повышенной гибкостью и прочностью сцепления абразива с основой и повышенной прочностью самой основы. Кроме того, благодаря специальным (например, стеаратовому) покрытиям слоя абразива предотвращается забивка их мелкими частицами (так называемые незасоряющиеся покрытия). Использование вместо сплошной ткани в качестве основы сетки позволяет отсасывать через нее образующиеся мелкие частицы (беспыльная шлифовка). Использование поролона в основе увеличивает гибкость и позволяет впитывать грязь с последующей очисткой путем промывки и др.

Шлифовальные пасты представляют собой абразивные микропорошки (пемзы, трепела, карбида кремния, электрокорунда), растертые на легкорастирающихся связующих веществах (раствор невысыхающих масел, парафин, технический вазелин, воск). Растворителями служат скипидар, уайт-спирит, керосин, бензин, разбавителем - вода. Пасты могут быть жидкие, мазеобразные и твердые.

Качество паст зависит от используемого абразивного материала, зернистости, рецептуры неабразивных материалов, концентрации и консистенции. Пасты и свободный абразив используются для операций доводки.

Свободное зерно (шлифовальные порошки) в отличие от паст - сухие не связанные абразивные зерна (трепела, пемзы и др.). При шлифовании к порошкам, как правило, добавляют смачивающие жидкости - скипидар, керосин, масло или воду.

Щетки могут быть различной формы с металлической или синтетической «щетиной». Они применяются для удаления заусенцев, очистки поверхности от окалины, ржавчины, лака и краски, обработки сварных швов, а также для отделки поверхности: матирование, сатинирование, шлифование. Рабочий материал щеток варьируется от стальной и латунной проволоки до пластмассы с карбидом кремния. По структуре проволока может быть плетеной, не плетеной и гофрированной.

К абразивным инструментам относятся также и многочисленные напильники, рашпили и надфили.

13.2. Крепежные изделия (метизы)

Определение и классификация. Крепежные изделия служат для соединения сопрягаемых деталей. Соединения бывают разъемными и неразъемными. Разъемные соединения выполняются в основном с помощью резьбовых крепежных изделий - болтов, винтов, шпилек, гаек и др. Неразъемные соединения выполняются различными видами заклепок, сваркой, пайкой, склеиванием и т. п.

Согласно классификатору государственных стандартов крепежные изделия общемашиностроительного применения относятся к группе ГЗ, которая включает в себя следующие классы: Г31 - болты; Г32 - винты, шпильки; ГЗЗ - гайки; Г34 - заклепки; Г36 - шайбы, шплинты; Г37 - штифты; Г38 - прочие промышленные метизы. Однако на строительные рынки страны поставляется гораздо больше видов крепежных изделий, в том числе и современных, которые отсутствуют в указанном классификаторе.

Условно крепежные изделия можно подразделить на пять групп:

Массового применения;

Высокопрочные резьбовые;

Для односторонней постановки и безударной клепки;

Для высокоресурсных и герметичных соединений;

Для соединения полимерных композиционных материалов.

К традиционным наиболее применяемым крепежным изделиям массового использования (ГОСТ 27017) относятся гвозди, шурупы, болты различной конструкции, винты, шпильки, заклепки, шплинты, дюбеля, скобы, угольники, пластинки, стяжки, полкодержатели, хомуты, бобышки, фланцы и др. Однако следует учитывать, что существует разнобой в наименованиях одинаковых крепежных изделий. Например, забитый с помощью молотка шуруп, оставаясь номинально шурупом, по сути, будет являться гвоздем. Винт, закрепленный с помощью гайки, превращается в болт. Пластмассовые анкеры скорее следует отнести к дюбелям, а дюбель-гвоздь, пристреливаемый из монтажного пистолета, является не дюбелем, а гвоздем.

Различают также одноразовые крепежные изделия (гвозди, заклепки) и изделия, которые можно использовать несколько раз. Правильный выбор крепежных изделий обеспечивает надежную и долговременную эксплуатацию всех соединений в пространстве, а также позволяет придать этим соединениям надлежащий (с эстетической точки зрения) внешний вид.

Разновидности крепежных изделий. Гвоздь (рис. 13.3, а) - крепежное изделие, которое представляет собой цилиндр, конус, параллелепипед, пирамиду либо винт, имеющий заостренный один конец, а на втором, тупом конце имеющий плоскую рифленую либо декоративную шляпку. Гвозди изготовляют из стали, алюминиевых и медных сплавов, конструкционных пластмасс (жидкие гвозди) и других материалов.

Рис. 13.3. Гвозди (а) и шурупы (б)

Стальные гвозди изготовляют, как правило, из светлой низкоуглеродистой термически необработанной стали или из стальной проволоки (мягкие гвозди) методом холодного штампования. Они имеют плоскую гладкую или рифленую шляпку.

По назначению и техническим характеристикам гвозди подразделяются на строительные (ГОСТ 4028), толевые (ГОСТ 4029), кровельные (ГОСТ 4030), тарные (ГОСТ 4034), формовочные (ГОСТ 4035), обойные , штукатурные , отделочные , декоративные , финишные , рифленые , винтовые , ершенные (DIN 1052), дюбель -гвозди и др.

Маркируют гвозди двумя числами: первое указывает диаметр стержня, второе - длину в миллиметрах.

Шуруп (рис. 13.3, б) является разновидностью специальных винтов, имеющих резьбу большого шага и конический конец, используемый для соединения деталей из дерева, мягких пластмасс, а также металлов. Основное отличие шурупов - отсутствие необходимости нарезания резьбы, а диаметр отверстия варьируется в весьма широких пределах, в то время как под стандартную резьбу винтов или болтов нужны отверстия строго определенных диаметров.

Головки шурупов имеют различную конструкцию под разнообразный крепежный инструмент и могут быть потайными (ГОСТ 1145), полупотайными (ГОСТ 1146), полукруглыми (ГОСТ 1144), шестигранными (ГОСТ 11473), круглыми и квадратными. Для удобства завинчивания в головке шурупа имеется шлицевая канавка (шлиц) - прямая или крестообразная. Размеры шурупов: длина 6...200 мм, диаметр 1,65...20 мм. Диаметр головки примерно в 3 раза больше диаметра стержня. Резьба может нарезаться как по всей длине шурупа, так и на части его длины, но не менее чем 0,6 длины шурупа.

Изготовляют шурупы из углеродистых и нержавеющих сталей, латуни, алюминиевых сплавов. Выпускаются без покрытия и с покрытиями (фосфатирующими, пассифирующими пленками, цинком, многослойными составами: медь-никель, медь-никель-хром и др.).

Разновидностью шурупов являются саморезы , имеющие на конце острый наконечник или сверло (бур). Их заворачивают без предварительного сверления гнезда. Они могут быть с потайной, полусферической или шестигранной головкой; с частой и двухзаходной резьбой и с резьбой с крупным шагом. Диаметр их от 3,5 до 5 мм и длина - 19... 152 мм. Изготовляют, как правило, с оксидированной или оцинкованной поверхностью. Строение шлицев и головок саморезов не отличается от аналогичных элементов винтов.

Болты - представляют собой цилиндрические стержни с головкой, имеющие по всей длине или на части длины резьбу, на которую навинчивается гайка (рис. 13.4). Изготовляют болты из углеродистой стали, алюминиевых и медных сплавов, конструкционных пластмасс и других материалов.

Рис. 13.4. Конструкции болтов: а - с шестигранной головкой и полной резьбой;

б - с шестигранной головкой и с неполной резьбой; в - с полукруглой гладкой головкой;

г - с головкой со шлицом под отвертку

Как правило, болт имеет шестигранную головку (ГОСТ 7798, 7805, DIN 931, 933), реже внутренний шестигранник под ключ. Существуют болты с Т-образной, полукруглой и потайной головками, а также откидные, костыльковые и анкерные болты. Некоторые болты имеют шип или ус на опорной поверхности головки, которые служат для предотвращения проворачивания и используются для болтового соединения, т. е. при отсутствии внутренней резьбы в соединяемых деталях и необходимости неоднократной сборки и разборки. Иногда для соединения деревянных элементов используют болты с квадратной головкой.

Поверхность болтов может быть без покрытия либо оцинкованной, хромированной или с многослойным покрытием. Вид покрытия зависит от назначения болта. Для болтов установлены следующие обозначения, например: М6×50 - болт с шестигранной головкой, с метрической резьбой диаметром 6 мм, длиной 50 мм.

На сегодняшний день термин «болт» несколько утратил свою однозначность, поскольку появились болты упорные, предназначенные для распорки определенных элементов или конструкций, а также болты анкерные , являющиеся промежуточным крепежным элементом.

Для соединения массивных деревянных элементов, когда длины болтов не хватает, используют шпильки . В отличие от болтов они имеют резьбу на обоих концах (DIN 975).

Винты также имеют цилиндрическую форму с головкой на одном конце и резьбой для ввинчивания в какую-либо соединяемую деталь на другом (рис. 13.5). По назначению различают крепежные и установочные винты (ГОСТ 17475, DIN 965).

Рис. 13.5. Разновидности винтов: а - с цилиндрической головкой и внутренним шестигранником; б - с цилиндрической головкой и прямым шлицем; в - линзовидной головкой;

г - с полупотайной головкой и прямым шлицем; д - с потайной головкой и внутренним шестигранником; е - с потайной головкой и прямым шлицем; ж - винт-конфирмат; з - с потайной головкой и крестообразным шлицем; и - винт-барашек; к - винт-крюк

Крепежный винт является наиболее распространенным и представляет собой стержень с резьбой на одном конце, а также головкой на другом. Является главным элементом разъемного винтового соединения.

Установочные винты используются при необходимости зафиксировать взаимное расположение деталей относительно друг друга. По новым европейским стандартам установочные винты выпускаются в основном с приводом под внутренний шестигранник (DIN 913 и 914).

В отличие от болтов винты имеют головки с прорезанным шлицем в виде прямолинейного или крестообразного углубления для завертывания и отвертывания их отверткой. Существует также шестиконечный шлиц. Кроме того, внутренний шестигранник тоже по определению является шлицем. Головки винтов бывают цилиндрической, цилиндрической скругленной, полукруглой, потайной, полупотайной или линзообразной формы. Диметры винтов 2...16 мм, длина - 3...80 мм.

Самонарезающие винты отличаются тем, что в процессе завинчивания выполняют одновременно резьбу в соединяемом материале (ГОСТ 11650, 11651 и 11652).

На конце винта иногда делают отверстие под шплинт – проволочный стержень полукруглого сечения, согнутый почти пополам. Он предохраняет крепежное изделие от самопроизвольного отвинчивания гайки. Между гайкой и деталью ставят шайбу с внутренним отверстием, позволяющим свободно проходить стержню винта.

Винтовые соединения применяются при наличии внутренней резьбы в соединяемых материалах без использования гайки и не предполагают частой сборки и разборки.

Гайка - крепежное изделие с резьбовым отверстием и конструктивным элементом для передачи крутящего момента. Применяется в болтовых и шпилечных соединениях, часто в сочетании с шайбой. Кроме обыкновенных шестигранных (ГОСТ 5915 и 5927) существует множество других разновидностей гаек:

- колпачковая гайка - элемент со сферической и плоской торцевыми поверхностями и глухим резьбовым отверстием. Применяется чаще всего в качестве декоративной;

- гайка-барашек , имеющая плоские выступающие элементы для передачи крутящего момента и затягивается вручную;

- самоконтрящаяся гайка с нейлоновым вкладышем, который предохраняет от самопроизвольного отвинчивания. Применяется при повышенных вибронагрузках соединяемых изделий.

Кроме этого, выпускаются высокопрочные гайки с фланцем (ГОСТ 22354), корончатые, удлиненные, прорезные, приварные гайки и др.

Болты, винты, шпильки и гайки, изготовленные из углеродистых качественных и обыкновенного качества сталей, после вытачивания подвергаются закалке с отпуском.

Шайба - деталь крепежного соединения, которая подкладывается под гайку или головку болта для создания большей опорной площади и уменьшения повреждений поверхности детали. Применение шайб так же возможно и при опасности провала головки болта либо элементов механической фиксации резьбового соединения в отверстие детали.

Кроме традиционных плоских шайб общего назначения (ГОСТ 11371) применяются и другие разновидности:

- стопорная шайба, служащая для предотвращения самоотвинчивания крепежных изделий при помощи конструктивных элементов;

- пружинная шайба (ГОСТ 6402), называемая гровером, - разрезная круглая шайба, концы которой расположены в разных плоскостях и служащая для предотвращения самоотвинчивания крепежных изделий посредством ее упругой деформации под нагрузкой.

Заклепка - крепежное изделие в форме гладкого цилиндрического стержня с головкой на одном конце, служащее для получения неразъемного соединения за счет образования головки на другом конце стержня пластической деформацией (DIN 7337). Наша промышленность выпускает заклепки с плоской (ГОСТ 10303), полукруглой (ГОСТ 10299) и потайной (ГОСТ 10300) головками. В настоящее время для работ с применением гипсокартонных или металлических листов используются тяговые заклепки, которые устанавливаются с помощью специального аппарата. Как правило, ножка тяговой заклепки выполняется из стали.

Анкерное (дюбелъное) крепление состоит из двух элементов. Во-первых, это гильза, которая устанавливается в предварительно высверленное отверстие. Между гильзой и материалом основания возникает сила трения. Это происходит за счет механического расширения гильзы в отверстии, что может достигаться разными способами. Во-вторых, в гильзу вставляется крепежная деталь (болт, винт, шпилька, шуруп, специальный гвоздь), или анкеровка может происходить за счет внешнего или внутреннего упора.

Анкеры предназначены для восприятия высоких нагрузок и поэтому выполняются из металла. Дюбели рассчитаны на меньшие нагрузки и изготавливаются из пластика (нейлон, полиэтилен, полипропилен).

В конструкциях столярно-мебельных изделий используют нагели. Они могут быть деревянные и металлические, четырех- или шестигранной формы. Ставят их чаще всего на клею и перпендикулярно плоскости соединения.

Стяжки изготовляют чаще всего из стали с цинковым покрытием. Они могут быть резьбовые, эксцентриковые и клиновые .

Скобы небольших размеров, используемые для вспомогательного крепления при различных технологических операциях, готовят из плоской проволоки. Высота их, как правило, 8...10 мм. Скобы, используемые при строительстве зданий и сооружений из бревен или брусьев, изготавливают из круглой или квадратной стали толщиной 10...18 мм.

Хомуты - приспособления в виде охватывающих растянутых связей для соединения элементов деревянных конструкций сращиванием по длине и наращиванием по высоте либо зажимы для уплотнения шлангов, рукавов и патрубков. По конструкции и назначению могут быть проволочные, болтовые, червячные, шарнирные, трубные, силовые и др.

Паяльные материалы

Припои. Припой - сплав металлов, предназначенный для соединения деталей и узлов различных конструкций методом пайки. Должен обладать целым рядом специфических свойств:

Хорошо растворять основной металл;

Обладать хорошей текучестью в расплавленном состоянии;

Легко растекаться по поверхности соединяемых деталей;

Хорошо смачивать поверхности соединяемых материалов;

Иметь требуемые характеристики в твердом состоянии (механическая прочность, стойкость к воздействию внешней среды, усадочные напряжения, коэффициент теплового расширения и т. п.).

Выбор припоя зависит от вида соединяемых металлов или сплавов, от способа пайки, температурных ограничений, размеров деталей, требуемой механической прочности, коррозионной стойкости и др.

В зависимости от химического состава и температуры плавления припоев различают пайку мягкими и твердыми припоями (ГОСТ 19248). К мягким относятся припои с температурой плавления до 400 °С, к твердым - выше 400 °С.

Пайка мягкими припоями получила более широкое распространение, особенно при производстве монтажных работ. Наиболее часто применяемыми мягкими припоями являются оловянно-свинцовые (ГОСТ 21930 и 21931): ПОС-90, ПОС-60, ПОС-40, ПОС-30, ПОС-18 (ПОС - припой оловянно-свинцовый, цифры после дефиса обозначают процентное содержание олова в сплаве). Мягкие припои изготовляются в виде прутков, полос, болванок, порошковой проволоки (диаметром до 3 мм) и трубок, наполненных флюсом.

Твердые припои создают более высокую прочность шва. Наиболее распространенными из них являются медно-цинковые (ГОСТ 23137): ПМЦ-36... ПМЦ-56, Г1 МЦ-47 и др. Цифры после дефиса указывают на среднее содержание в составе припоя меди (остальное цинк). В зависимости от содержания цинка изменяется и цвет припоя. Припои применяются для пайки бронзы, латуни, стали и других металлов, имеющих высокую температуру плавления. Припой ПМЦ-42 применяется при пайке латуни с содержанием 60-68% меди. Припой ПМЦ-53 применяется при пайке меди и бронзы.

Находят применение и серебряные припои (ГОСТ 19738): ПСр-10, ПСр-12... ПСр-70. Цифры после дефиса указывают на содержание в составе припоя серебра. Серебряные припои обладают большой прочностью, спаянные ими швы хорошо изгибаются и легко обрабатываются. Припои ПСр-10 и ПСр-12 применяются для пайки латуни, содержащей не менее 58% меди, припои ПСр-25 и ПСр-45 - для пайки меди, бронзы и латуни, припой ПСр-70 с наиболее высоким содержанием серебра - для пайки волноводов, объемных контуров и т. п.

Облегчить пайку, улучшить ее качество и избежать перегрева малогабаритных деталей можно с помощью паяльных паст - это пастообразная масса, состоящая из смеси порошкообразного припоя с частицами, обычно сферической формы, и флюса-связки. Свойства паяльной пасты зависят от процентного содержания металлической составляющей, типа сплава, размеров частиц порошкообразного припоя и типа флюса.

Более качественными припоями в настоящее время являются многоканальные трубчатые , в которых может находиться до пяти каналов флюса в прутке. Увеличенное количество каналов обеспечивает равномерное распределение флюса без пропусков по длине прутка, что предотвращает возможность пайки «всухую» - без флюса, как в случае с одноканальными припоями. Производятся они с разным процентным содержанием и разными типами флюса, а также разного диаметра. Для их изготовления используются только высокочистые сплавы с минимальным количеством примесей, отвечающие требованиям всех основных национальных и международных стандартов. Такие припои разработаны для различных применений, в том числе для пайки печатных плат радиоэлектронной аппаратуры и конструкционных изделий.

К высококачественным припоям, отвечающим международным стандартам, можно отнести безсвинцовые припои для групповой пайки. Они минимизируют образование шлака, обеспечивают значительно больший срок жизни припоя и получение качественных блестящих соединений без перемычек и сосулек. Поставляются в виде слитков, шариков, гранул и проволоки на катушках.

Флюсы. Паяльный флюс - химически активное вещество, предназначенное для очистки и поддержания чистоты поверхностей паяемого металла и припоя с целью снижения поверхностного натяжения и улучшения растекания жидкого припоя. Механизм действия флюса заключается в том, что окис- ные пленки металла и припоя растворяются или разрыхляются и всплывают на поверхность флюса. Вокруг очищенного металла образуется защитный слой флюса, препятствующий возникновению окисных пленок. Жидкий припой замещает флюс и взаимодействует с основным металлом. Слой припоя постепенно увеличивается и при прекращении нагрева затвердевает.

Флюс выбирают в зависимости от свойств соединяемых пайкой металлов или сплавов и применяемого припоя, а также от способа пайки. От качества флюса во многом зависит хорошее смачивание припоем мест спайки и образование прочных швов. При температуре паяния флюс должен плавиться и растекаться равномерным слоем, в момент же пайки он должен всплывать на внешнюю поверхность припоя. Температура плавления флюса должна быть несколько ниже температуры плавления применяемого припоя. В зависимости от температурного интервала (ГОСТ 19250) они подразделяются на низкотемпературные (t пл ≤ 450 °С) и высокотемпературные (t пл > 450 °С).

В зависимости от активности различают две группы флюсов:

химически активные , растворяющие пленки окиси, а часто и сам металл (соляная кислота, бура, хлористый аммоний, хлористый цинк);

химически пассивные , защищающие лишь спаиваемые поверхности от окисления (канифоль, воск, стеарин и др.).

Остатки флюса, особенно активного, т. е. продукты его разложения нужно удалять сразу после пайки, так как они загрязняют места соединений и являются очагами коррозии.


Похожая информация.