Средства центровки валов правила стандарты нормы. Центровка и выверка валов

Подвод и слив воды

Для обеспечения надежной и долговечной работы насосного агрегата валы насоса и электродвигателя должны быть установлены соосно, т. е. в пространстве их оси должны лежать на одной прямой. При изготовлении деталей насоса и электродвигателя весьма затруднительно выдержать размеры с точностью, которая обеспечила бы соосность при агрегировании. Поэтому при установке насоса и электродвигателя на общей плите их валы центруют, т. е. регулируют с помощью прокладок.

При поставке агрегированных насосов эту работу выполняет завод-изготовитель. Однако центровка агрегата может нарушиться при транспортировке, а также при деформации тонкостенной фундаментной плиты в результате старения металла или при неравномерном прилегании ее к фундаменту. Схема нарушения соосности валов приведена на рис. 1. В первом случае оси вала смещены в горизонтальной или вертикальной плоскостях, оставаясь при этом параллельными, во втором — они скрещиваются. В обоих случаях, если отклонения превышают определенные величины, агрегат работает ненормально: появляется шум, вибрация, возрастает потребляемая мощность, греются подшипники и муфта. Детали насоса и электродвигателя при такой работе изнашиваются в несколько раз быстрее обычного.

Рис. 1. Схема нарушения соосности валов.

Допустимые отклонения в несоосности валов (табл. 1) зависят от их быстроходности и массы вращающихся деталей. Чем выше стоимость агрегата, тем более жесткие требования предъявляются к соосности валов.

Таблица 1. Допустимые величины перекоса и параллельного смещения осей валов
при диаметре муфты 500 мм (СНиП III-Г. 10.3—69)


При центровке агрегатов необходимо соблюдать следующие основные положения: в агрегатах с редуктором диктующим агрегатом является редуктор, который устанавливают, выверяют и фиксируют штифтами; насос, электродвигатель и гидромуфту центруют по редуктору; в агрегатах с гидромуфтой насос и электродвигатель центруют по гидромуфте, предварительно выверенной, закрепленной и зафиксированной; в агрегатах без редуктора центровку выполняют по насосу, который предварительно выверяют, крепят и фиксируют; центровку агрегата, не имеющего общей плиты, выполняют в два этапа: предварительно — перед заливкой фундаментных болтов и окончательно — после закрепления насоса к фундаменту; центровку агрегата, имеющего общую фундаментную плиту, производят после ее выверки, подливки и затяжки фундаментных болтов. Окончательно валы насосного агрегата центруют после присоединения к нему трубопроводов.


Рис. 2. Центровка валов насоса и электродвигателя:
а — с помощью индикаторов; б — с помощью двух пар скоб и щупа;
1— полумуфта; 2 — скоба; 3 — индикатор; 4 — щуп.

Известно несколько способов контроля соосности валов. Наиболее распространенным является центровка с помощью скоб закрепленных на полумуфтах центруемых валов (рис. 2). Соосность контролируют индикатором. В других конструкциях вместо индикатора применяют болты с заостренными и закругленными концами; зазоры измеряют щупом. Для сокращения времени на центровку валов применяют две пары скоб, располагаемых диаметрально на полумуфтах. Варианты крепления их к полумуфтам показаны на рис. 3.


Рис. 3. Способы крепления скоб к полумуфтам:
1 — полумуфта; 2 — скоба.

В процессе центровки муфту со вставленными пальцами поворачивают и устанавливают поочередно на угол 90, 180, 270 и 360° (при двух парах скоб достаточно проверить зазоры при углах 90 и 180°). При этом отмечают разность показаний индикатора (или разность зазоров). Для достижения соосности электродвигатель (насос, гидромуфту) перемещают в необходимом направлении. Вертикальное перемещение производят за счет подкладывания под лапы металлических пластин, которые следует выбирать такой толщины, чтобы общее количество их не превышало трех. При большем количестве крепление теряет жесткость.

Необходимость центровки валов возникает как при монтаже нового оборудования, так и при его ремонте и техническом обслуживании. Существует несколько ее методов: с помощью оптических или лазерных приборов, штангенциркулем, щупами, бесконтактными датчиками, а также приспособлениями с индикаторами часового типа. Как практически использовать последние, чтобы получить информацию о реальном положении валов и восстановить их соосность, рассказывают специалисты OOO «Кречина».

Компенсационные возможности муфт

Как уже известно, задача центровки - установить оси валов так, чтобы они составляли одну прямую линию. Понятие «ось» само по себе идеально, а в жизни приходится иметь дело с реальными предметами (деталями машин), у которых всегда есть погрешности изготовления. Поэтому, чтобы избежать возникновения нагрузок от несоосно вращающихся валов, применяют компенсирующие соединительные муфты. Они способны передавать крутящий момент от привода рабочему органу с некоторой расцентровкой валов, компенсируя возникающие нагрузки своими упругими элементами. Допуски на центровку валов агрегатов задаются в зависимости от типа соединительной муфты и рабочей скорости вращения роторов агрегата.

ООО «Кречина» является официальным дистрибьютером немецкого завода KTR Kupplungstechnik GmbH. Муфты производимые KTR отличаются прецизионной всесторонней обработкой, что позволяет за измерительную базу для контроля соосности валов брать поверхность полумуфт. Компания Продукция завода KTR всегда отличалась качеством и долгим сроком служения, в том числе среди достоинств их продукции числится и компенсирование достаточно большой несоосности. Так среди последних инноваций можно отметить введение нового материала T-PUR для зубчатых венцов Rotex. Так как при большой несоосности валов, в эластомере при работе деформации образуется тепло, то происходит постепенное разрушение муфты. Новый эластомер выдерживает пиковые температурные нагрузки до 150°C.

Обычная муфта ROTEX является однокарданной соединительной муфтой и рассчитана на работу в условиях отсутствия центровки в пределах (максимальные значения):

  • угловая несоосность — до 0,7°;
  • смещение — 0,3 - 1,5 мм.

Для нормальной работы муфты в условиях больших перепадов температур или для более высокой несоосности используются двухкарданные муфты ROTEX DKM и необслуживаемые зубчатые муфты BOWEX - рассчитанные на компенсацию большей несоосности.
Правильно подобранная муфта под Ваше оборудование, с учетом существующей угловой несосности, смещения, больших перепадов температур и расчитанных под крутящий момент и момент инерции Вашей установки обеспечит долгий срок службы и экономию Ваших денег.

Основы центровки часовыми индикаторами

Для удачной центровке валов необходимо выполнить следующие условия:

1. Узнать величину прогиба часового индикатора (если имеется):
Прогиб выносного элемента с навешенными на него индикаторами определяется собственно изгибом штанги, на которой закреплены индикаторы, а также других частей крепления этого устройства на полумуфтах. Изгиб происходит в результате действия сил гравитации и не может быть совсем исключен в большинстве случаев центровочных работ.
Во всех случаях центровки необходимо прилагать все усилия к минимизации суммарного прогиба. Если это не осуществимо, повторные измерения часто не совпадают и, в связи с этим возникают различные ошибки. Если же величина прогиба известна и постоянна, то она может быть скомпенсирована в процессе расчета центровки.

2. Убедится в отсутствии люфта (неплотное прилегание лапы двигателя к платформе на которой он установлен в следствии отсутствия идеально ровных поверхностей).

3. Жестко закрепить штатив с установленным часовым индикатором на одном валу.

4. Убедиться в отсутствии колебаний штатива.

После выполнения вышеперечисленных условий, можно приступать к измерениям. Установите часовой индикатор в положение 12:00 как показано на рис. 1 (шток индикатора должен касатся самой верхней точки вала, как на рисунке 2).

Рисунок 1

Обнулите индикатор (так как шкала на часовом индикаторе подвижная, совместите ноль на шкале с положением стрелки индикатора), а затем проверните вал и запишите показания индикатора в положении 6:00 (нижняя крайняя точка вала). Получаем результаты для вертикального смещения, чтобы измерить горизонтальное смещение делаем аналогичные измерения в положении 9:00 (обнуляем индикатор) и 3:00. При измерениях таким способом разница в показаниях индикаторов равна удвоенной величине смещения. Вам необходимо поделить эту разницу на 2 для определения смещения. Например при измерении получаем разницу в 0,5 мм, значит величина смещения равна 0,25 мм.

Рисунок 2

При этом получаем, что если разница получается отрицательная, значит для вертикального смещения вал на котором установлен штатив находится ниже второго вала, для горизонтального смещения при отрицательной разнице второй вал смещен влево.

Для измерения угловой несоосности штатив оставляем на месте, а индикатор монтируем в контакте с консолью. Пример монтирования индикатора указан на рис. 3.

Рисунок 3

Консоль должна быть установлена под 90° по отношению к валу. Как и в случае со смещением, производим измерение в положениях 12:00 и 6:00 для вертикальной, 9:00 и 3:00 для горизонтальной угловой несоосности. При измерениях таким способом величина угловой несоосности равна разнице в показаниях индикаторов, деленной на диаметр измерительной окружности. Например при измерении получаем разницу в 5,0 мм, а диаметр описываемый штоком индикатора - 100 мм, значит угловая несоосность составляет 0,05 мм.

После вычисления, с помощью калибровочных пластин (рис. 4), подкладываемых под «лапы» двигателя, избавьтесь от угловой и радиальной несоосности. Более трех калибровочных пластин подкладывать под одну лапу запрещается.

Рисунок 4

По вопросам центровки валов обращаться в ООО «Кречина»,

Центровка насосов

Введение

До начала монтажных работ должны быть закончены строительные работы по зданию (сооружению), фундаментам и каналам.

Насосные агрегаты, поступающие на место монтажа в сборе с заглушенными и опломбированными патрубками, промываются для снятия консервирующей смазки и проверки состояния шеек валов, подшипников и сальников

Монтаж и центровка горизонтальных насосных агрегатов. Монтаж центробежных горизонтальных насосов начинают с установки плит или рам на фундамент и выверки их в плане, по высоте и горизонтали.Допускаются отклонения плиты (рамы) в плане и по высоте до 10 мм, а по горизонтали до 0,1 мм на 1 м длины плиты. Узлы насосных агрегатов устанавливают на общей раме или на отдельных рамах (рис.1 и 2).

Рис.1. Установка насосных агрегатов на общей фундаментной раме

1 - насос;

2 - электродвигатель.

Фундаментные рамы устанавливают на прокладки и крепят к фундаменту с помощью глухих или анкерных болтов. Прокладки помещают по обе стороны каждого болта и по всему периметру рамы через 300-1000 мм в зависимости от ее жесткости. Число прокладок по высоте не должно превышать пяти, включая тонколистовые, применяемые для окончательной выверки. После подливки рамы бетоном и затвердевания его до проектной прочности выполняют затяжку болтов. Окончательная центровка агрегата производится с помощью прокладок,помещенных между опорной поверхностью рамы и лапами двигателя. Установка прокладок под опорные поверхности гидромуфт и редукторов, а также под опорные поверхности насоса в агрегатах без гидромуфт и редукторов не разрешается и допускается только при наличии указаний завода-изготовителя. Плотность прилегания поверхностей прокладок друг к другу, а также к опорным поверхностям фундаментных рам (плит) и установленному на них оборудованию, проверяется щупом. Щуп толщиной 0,05 мм не должен входить в стык сопряженных поверхностей.

Рис.2. Установка насосных агрегатов на раздельных фундаментных рамах

1 - насос;

2 - электродвигатель.

Если горизонтальный насосный агрегат поступает на монтаж отдельными узлами,то в агрегатах без редуктора электродвигатель прицентровывают к выверенному и закрепленному на раме насосу, а в агрегатах с редуктором насос и электродвигатель - к выверенному и закрепленному редуктору. В агрегатах с трубопроводом насос прицентровывается к закрепленному трубопроводу, а в агрегатах с гидромуфтой редуктор, насос и электродвигатель - к выверенной и закрепленной гидромуфте.

При центровке насосных агрегатов с клиноременной передачей следят за тем,чтобы оси валов электродвигателя и насоса были параллельны, а канавки шкивов - расположены без смещения относительно друг друга.

Насосные агрегаты горизонтального исполнения на общей фундаментной плите-раме или на раздельных плитах-рамах перед подливкой бетонной смесью выверяют по высотным отметкам относительно репера или насечки по высоте, а также проверяют положение насосного агрегата по осям в плане и в горизонтальной плоскости. Для этого натягивают горизонтально-продольные и поперечные струны (рис.3). На струны подвешивают отвесы так, чтобы они совпали с соответствующими насечками, нанесенными на фундамент. На натянутые и закрепленные продольные струны каждого насоса или группы подвешивают отвесы таким образом,чтобы один отвес совпал с центром всасывающего патрубка насоса и насечкой,нанесенной на фундамент. Второй отвес должен совпасть с осью электродвигателя и насечкой. Поперечную струну необходимо натягивать, если одновременно устанавливают два или несколько насосов в одном ряду.При этом отвесы, опущенные с натянутой струны, должны совпасть с центрами нагнетательных патрубков (см. рис.3). При монтаже насосов, работающих на горячих жидкостях, обязательно проверяют зазор в продольных шпонках и зазор между дистанционной втулкой и отверстиями в лапах насоса. Они должны соответствовать зазорам, указанным в паспорте насоса.

Рис.3. Натяжение струны для проверки установки насосов

1 - насос;

2 - отвес;

3 - струна;

4 - плита;

5 - фундамент;

6 - насечка осевая;

7 - электродвигатель.

При монтаже насосного агрегата, имеющего раздельные опорные рамы или плиты,следует особое внимание обращать на зазор между торцами полумуфт, который всегда указывается в чертеже.

Для обеспечения надежной и безотказной работы насосного оборудования, необходимо перед пуском насосного оборудования обязательно необходимо контролировать и производить центровку насосов. Валы насоса и двигателя должны быть установлены соосно, т.е. оси вращения лежать на одной линии в двух плоскостях (горизонтальной и вертикальной) в процессе работы оборудования. Центрование насоса - это, процесс, призванный обеспечить совпадение центров (соосности) валов насоса и двигателя .

При производстве оборудования достаточно тяжело выдержать точность, которая позволила бы при сборке не производить центровку насосов. Поэтому при установке оборудования на раму, требуется произвести центровку насосов и электродвигателей. При поставке собранного оборудования данная процедура ложиться на плечи завода изготовителя. Однако, к сожалению, часто получаем насосы не отцентрованные (центровка может быть нарушена при транспортировании оборудования а также при деформации тонкостенной фундаментной плиты в результате старения металла или при неравномерном прилегании ее к фундаменту) с завовдов-производителей, поэтому работы по центровке насосов с двигателями часто выполняются с использованием подручных средств или на глаз.

Существует два типа несоосности угловая и параллельная, как правило если нарушена центровка оборудования, то присутствуют одновременно сразу два типа несоосности и если значения превышают заданные предел, то данные типы могут послужить причиной появления повышенного шума, вибрации, возрастания потребления электроэнергии, чрезмерная нагрузка на подшипниковый узел, соответственно это приведет к повышению температуры последних и как следствие, сокращения срока службы оборудования

Поэтому для безопасной и безотказной работы насосного оборудования, очень важно проверять качество центровке насосов и двигателей после установки перед запуском и в случаи необходимости произвести работы по центровке согласно допусков.

Схема нарушения соосности валов приведена на рис. 1. В первом случае оси вала смещены в горизонтальной или вертикальной плоскостях, оставаясь при этом параллельными, во втором - они скрещиваются. В обоих случаях, если отклонения превышают определенные величины, агрегат работает ненормально: появляется шум, вибрация, возрастает потребляемая мощность, греются подшипники и муфта. Детали насоса и электродвигателя при такой работе изнашиваются в несколько раз быстрее обычного.


Рис. 1. Схема нарушения соосности валов.

Допустимые отклонения в несоосности валов (табл. 1) зависят от их быстроходности и массы вращающихся деталей. Чем выше стоимость агрегата, тем более жесткие требования предъявляются к соосности валов.

Таблица 1. Допустимые величины перекоса и параллельного смещения осей валов
при диаметре муфты 500 мм (СНиП III-Г. 10.3-69)

При центровке агрегатов необходимо соблюдать следующие основные положения: в агрегатах с редуктором диктующим агрегатом является редуктор, который устанавливают, выверяют и фиксируют штифтами; насос, электродвигатель и гидромуфту центруют по редуктору; в агрегатах с гидромуфтой насос и электродвигатель центруют по гидромуфте, предварительно выверенной, закрепленной и зафиксированной; в агрегатах без редуктора центровку выполняют по насосу, который предварительно выверяют, крепят и фиксируют; центровку агрегата, не имеющего общей плиты, выполняют в два этапа: предварительно - перед заливкой фундаментных болтов и окончательно - после закрепления насоса к фундаменту; центровку агрегата, имеющего общую фундаментную плиту, производят после ее выверки, подливки и затяжки фундаментных болтов. Окончательно валы насосного агрегата центруют после присоединения к нему трубопроводов.

Рис. 2. Центровка валов насоса и электродвигателя:
а - с помощью индикаторов; б - с помощью двух пар скоб и щупа;
1- полумуфта; 2 - скоба; 3 - индикатор; 4 - щуп.

Известно несколько способов контроля соосности валов .

Центровка валов при помощи одной пары радиально-осевых скоб

Конструкция радиально-осевых скоб и их крепление показаны на рисунке 1.

Наружную скобу 1 закрепляют на полумуфте 2 установленной машины, а внутреннюю скобу 3 – на полумуфте 4 машины, которая должна быть соединена с установленной. Скобы крепят при помощи хомутов 5 и болтов 6 . В процессе центровки измеряют боковые зазоры a и угловые зазоры b при помощи щупов, индикаторов или микрометров. В двух последних случаях индикатор или микрометрическую головку устанавливают на место болтов 7 и 8 .

Перед началом измерения полумуфты должны быть разъединены, а валы раздвинуты с тем, чтобы скобы и полумуфты при вращении валов не прикасались. Для большей точности измерений при помощи болтов устанавливают минимальные зазоры a и b .

Независимо от способа проверки соосности валов зазоры между плоскостями полумуфт или между остриями радиально-осевой скобы измеряют щупом таким образом, чтобы пластинки щупа входили в зазор с ощутимым трением и на глубину не менее 2/3 своей длины (практически до 20 мм). Ввиду того что при замерах щупом неизбежны погрешности, величина которых зависит от опытности исполнителя, результаты измерений следует контролировать. При правильных замерах сумма числовых значений четных замеров равняется сумме числовых значений нечетных замеров, то есть

a 1 + a 3 = a 2 + a 4 и b 1 + b 3 = b 2 + b 4 .

В противном случае, не изменяя положения полумуфт, измерения следует повторить более тщательно.

На рисунке 2 показаны четыре взаимных положения валов машин.

Рисунок 2. Взаимные положения валов машин

В положении А валы расположены на одной прямой, и центры их совпадают. Очевидно, что при одновременном проворачивании валов зазоры a и b должны оставаться неизменными.

В положении Б валы параллельны один другому, но между ними есть сдвиг. При проворачивании валов угловые зазоры b остаются неизменными, а боковые зазоры a изменяются.

В положении В центры валов совпадают, но оси их расположены под углом. В этом случае при проворачивании валов меняются величины угловых зазоров b , а боковые зазоры сохраняются.

Наконец, в положении Г центры валов сдвинуты и оси их расположены под углом. При проворачивании валов будут изменяться величины как угловых b , так и боковых зазоровa .

Первое измерение зазоров a 1 и b 1 производят, когда скобы находятся в верхнем положении. Затем валы проворачивают на 90° в направлении вращения приводного механизма или генератора и снова замеряют зазоры a 2 и b 2 при совпадении рисок на валах. Всего делают четыре замера при каждом повороте валов на 90°. Пятый замер выполняют как контрольный, когда скобы снова приходят в верхнее положение. Величина зазоров в первом и пятом положениях скоб должны совпадать.

Действительной величиной зазоров a иb в данной точке будет полусумма соответствующих зазоров, измеренных при двух замерах в этой точке

Соосность валов контролируют лазерными системами

При проведении работ по центровке, специалисту необходимо принять во внимание множество факторов, влияющих на условия эксплуатации насосов. Это осевой зазор в муфте, деформация корпуса, установка подшипников (если подшипники менялись), плоскостность базы, тепловые расширения, изгиб валов, натяжение трубной обвязки и прогиба выносных элементов измерительной системы. В полномочия специалиста по центровке входит определение влияния этих факторов и проведение соответствующих корректировок.

Вибрация не должна использоваться как критерий качества центровки, несмотря на то, что задачей центровки является ее снижение. Оценивать центровку необходимо в статике с помощью измерительных инструментов, закрепленных на валах, используя «Допустимые пределы центровки». Другие причины могут вызвать вибрацию, такие как резонанс конструкции или дисбаланс. Поэтому нельзя использовать повышенную вибрацию как единственный признак расцентровки. Но если работающий насос не вызывает вибрации, то, очевидно, что центровка удовлетворительна и ее можно принять.

Шум и повышенная температура подшипника могут быть связаны с расцентровкой, но эти симптомы также могут указывать на другие проблемы. Применять наличие шума и повышенной температуры у подшипника в качестве единственных признаков плохой центровки недопустимо.

Эти рассуждения не мешают специалисту остаться у машины при запуске и для своего удовлетворения понаблюдать за ее рабочим состоянием. Не запрещается также для достижения более мягкой работы машины, с помощью средств виброконтроля в качестве обратной связи, проводить центровку работающего агрегата.

Выбор измерительных систем и методов - дело специалиста. Основные варианты - стрелочные индикаторы или лазеры. Основное требование для любой системы центровки валов - повторяемость измерений. Это оценивается тестом на повторяемость показаний при круговом повороте. Этот тест - хороший способ оценки крепежа системы при принятии решения о ее закупке. В основном, измерительная система, которая не возвращается в ноль (с допуском 0,05 мм) после вращения на 360О, должна быть отвергнута.

Центровка валов электродвигателей и механизмов производится с целью, чтобы их оси находились на одной прямой. Несоосные вращающиеся валы создают значительные нагрузки, приводящие к разрушениям, преждевременному выходу деталей из строя и значительному шуму.

Соосно выставить механизмы не всегда получается, поэтому применяют с компенсацией расцентровки осей упругими элементами. Они выполняют свои функции до определенной величины несоосности. Центровка валов по полумуфтам наиболее удобна. Их поверхности являются базовыми, на них и крепятся измерительные приспособления. В теплоэнергетике большая часть машин работает с упругими втулочно-пальцевыми муфтами (МУВП). В мощных агрегатах применяются зубчатые муфты (МЗ).

Параметры центровки

Центровка валов индикаторами проверяется по следующим параметрам:

  • R - взаимное радиальное смещение цилиндрических поверхностей полумуфт (радиальная расцетровка).
  • T - разница раскрытия торцов полумуфт в вертикальной и горизонтальной плоскостях (торцевая или угловая расцентровка).

Требования к муфтам

Допустимая расцентровка уменьшается с ростом частоты вращения. Она составляет для МУВП 0,12 мм при 1500 об/мин и 0,05 мм при 3000 об/мин.

Важно! При выборе муфты необходимо проверить соответствие ее характеристик техническим условиям, согласно которым ее осевое и радиальное биение не должно быть выше 0,05 - 0,08 мм. Посадка на валу создается плотная. До разборки на полумуфты наносятся метки, по которым можно будет восстановить их взаимное расположение. Нарушение этих правил может уменьшить точность центровки.

Горизонтальность установки валов

Фактически ось не является прямой, поскольку изгибается под влиянием собственного веса и других нагрузок. При центровке агрегата нужно контролировать положение валов относительно горизонта. Контроль производится на шейках подшипников. Можно использовать рядом расположенную ровную поверхность вала с помощью уровня «Геологоразведка» (цена деления 0,1 мм на 1 м).

Устройства для контроля центровки

Опытные мастера способны произвести контроль центровки, приложив металлическую линейку к муфте и по просвету определив соосность. Но для большей уверенности, чтобы уложиться в норму, можно воспользоваться пластинчатым щупом или индикатором ИЧ-0,01. Последний обеспечивает необходимую точность 0,01 мм, которой достаточно, чтобы уложиться в норму.

Сначала разъединяются полумуфты, а затем на них или на валах рядом устанавливают приспособления для центровки валов электрических машин. Они должны быть достаточно жесткими, чтобы не прогибались в процессе измерений. Измерения можно проводить также при соединенных муфтах.

После установки и укрепления приспособлений проверяется работоспособность механизма индикатора. Для этого следует оттянуть и вернуть на место измерительные стержни. При этом стрелка должна прийти в исходное положение.

Осевые и радиальные зазоры проверяются путем одновременного поворота обоих роторов из исходного положения на углы 90°, 180° и 270° в сторону вращения привода.

Как центрировать агрегаты?

Перед измерениями проверяется затяжка анкеров и Ослабление крепления, наличие трещин в раме, дефекты фундамента, неравномерная осадка пола являются причинами нарушения центровки при работе механизмов.

Приспособления устанавливаются на полумуфты, затем замеряется расцентровка:

  • радиальная в вертикальной плоскости;
  • радиальная в горизонтальной плоскости;
  • торцевая в вертикальной плоскости;
  • торцевая в горизонтальной плоскости.

По результатам измерений производится корректировка положения осей валов. Для этого опоры перемещают по вертикали с помощью прокладок, а по горизонтали болтами, расположенными на раме. Центровочную скобу устанавливают в положение большего значения параметра расцентровки, после чего опоры перемещают на величину фактической расцентровки.

Центровка валов производится поочередно в горизонтальной и вертикальной плоскостях. После окончания процесса перемещения и фиксации опор измерения производят повторно. Если это необходимо, их корректируют снова.

Центровка насосных установок

Центровка валов насоса и электродвигателя необходима для балансировки вращающихся деталей. Это относится не только к колесу и валу, но и к ротору электродвигателя. Обязанностью изготовителя является демонстрация агрегата в рабочем режиме подачи без превышения допустимого уровня вибрации. Цены на промышленные агрегаты высокие, а при дальнейшей эксплуатации доказать вину производителя будет почти невозможно.

Стандарты предусматривают, что после пуска ответственность за вибрацию в дальнейшем ложится на потребителя. Испытания насоса должны проводиться на штатном месте его эксплуатации. Особое внимание уделяется фундаменту и опорной раме, на которую устанавливаются двигатель и насос.

Места стыковки (монтажные приливы) должны быть тщательно обработаны, чтобы размеры зазоров не были больше 0,2 мм на 1 м стыка. В местах соединений предусматривается возможность регулировки уровней прокладками толщиной от 1,5 до 3 мм.

Для насосов мощностью выше 150 кВт по стандарту центрирование производится винтами в вертикальной и горизонтальной плоскостях (не менее шести винтов для горизонтального насоса и не менее четырех - для вертикального). Их количество зависит от веса оборудования.

Важно! Центровка соединения привода и насоса производится и контролируется перед монтажом и в течение всего периода эксплуатации. Также нужно обратить внимание, что двигатель и насос бытового назначения помещаются в общем корпусе и отцентрированы на заводе. Их контролировать и выставлять не нужно.

Если между насосом и двигателем установлен редуктор, в первую очередь следует отцентровать его и закрепить штифтами. Остальные валы агрегата ориентируются по нему. При поступлении насосов с завода в сборе с электродвигателями центровка валов агрегатов производится по двигателям. При сборке насоса на опорной раме вал двигателя выставляется по нему.

Балансировка карданного вала

Центровка карданного вала производится для устранения вибраций, возникающих при работающем двигателе. Причинами дисбаланса могут быть:

  • нарушение требований в технологии изготовления вала или после его ремонта;
  • неправильная сборка;
  • нарушена центровка деталей вала и сопрягаемых частей трансмиссии;
  • погрешности термической обработки изделия;
  • механические повреждения.

Сначала выявляется дисбаланс, а затем производится его устранение путем установки противовеса. Работа производится на специальном оборудовании станции техобслуживания. Для этого используют

Реальные условия работы карданного вала имитируются за счет его вращения электродвигателем через передачу (обычно ременную).

Отклонения определяются датчиками, перемещающимися по длине вала. Специальная программа обрабатывает результаты измерения, после чего определяется место установки и величина балансировочного груза. Специалист по техобслуживанию добавляет груз, высверливает металл или устанавливает прокладки для обеспечения соосности.

Приборы для центровки

Произвести самые простые измерения при проверке центровки валов можно с помощью складного метра и металлической линейки. Для правильных измерений необходимо более точное приспособление для центровки валов: скоба с отсчетным устройством, пластинчатый щуп, микрометр, штангенциркуль.

  1. Штангенциркуль - прибор для измерения диаметров (наружных и внутренних) и длины деталей до 4000 мм. Отдельные типы позволяют определять глубины, расстояния до внутренних и наружных уступов, производить разметку. Уровень точности составляет от 0,01 мм до 0,1 мм. Приборы могут быть механическими и цифровыми - с выводом измеренных значений на дисплей. Измерения производят с ослаблением крепления штанги, после чего передвигают измерительную наружную губку, пока вал слегка не зажмется с двух сторон. Затем винтом микрометрической подачи подводится рамка с нониусом и закрепляется зажимом. Целые миллиметры отсчитываются по делениям на штанге, а доли - по нониусу.
  2. Микрометр - прибор для измерения наружных диаметров и длины деталей до 2000 мм с точностью от ±0,001 мм до 0,01 мм. При проведении измерений деталь зажимается мерительными поверхностями прибора путем вращения микрометрического винта с трещоткой, пока последняя не начнет проскальзывать.
  3. Скобы с отсчетным устройством служат для измерения внешних диаметров и длины деталей до 1000 мм. Прибор для центровки валов крепится на переставную пятку, а на подвижной находится индикатор с делениями. Измерения можно производить с точностью от ±0,002 до 0,01 мм.
  4. Пластинчатый щуп - набор калиброванных пластин для измерения зазоров между торцами полумуфт центрируемых валов. Его можно применять как индикатор зазора между штифтом центровочной скобы и корпусом полумуфты. Пластины щупа вставляют в зазор с небольшим трением, которое поддерживается приблизительно одинаковым при каждом измерении.
  5. Уровень - прибор для проверки горизонтальности плит фундамента и рам агрегатов с приводами, а также для выверки линий валов электроприводов и механизмов. Применяют рамное устройство типа «Геологоразведка», где угол наклона определяется перемещением микрометрического винта, пока воздушный пузырек в ампуле с жидкостью не достигнет нулевого положения.

Лазерная центровка валов

Системы лазерной центровки выпускаются одно- и двухлучевые. Последняя является более точной и функциональной.

Измерительный блок устанавливается на валу и создает лазерный луч вдоль его центра вращения. От противоположного блока, установленного на сопрягаемом валу, детектируется другой луч. Оба сигнала улавливаются фотоприемниками, и при разных угловых положениях валов с высокой точностью определяется их расцентровка. Путем сравнения показаний при разных угловых перемещениях валов можно производить их центровку в горизонтальной и вертикальной плоскостях.

Система «Квант-ЛМ»

Большой популярностью пользуется центровка валов с применением лазерной системы «Квант-ЛМ», разработанной компанией «БАЛТЕХ». Производится центровка машин горизонтального и вертикального исполнения. Встроенный вычислительный блок сравнивает и обрабатывает сигналы от измерительных блоков. Результаты выводятся на дисплей, где показано состояние центровки относительно допустимой области, выделенной зеленым цветом, и запредельной зоны (красный цвет).

Система «Квант-ЛМ» позволяет устранить вибрации, уменьшить количество простоев и ремонтных работ, увеличить срок службы подшипников, уплотнений и муфт.

Заключение

Расцентровка роторов агрегатов является распространенным дефектом, который можно устранить. Для этого необходимо знать влияющие на нее факторы и способы центровки валов. Обычно центровка валов производится концентричной и параллельной установкой торцовых поверхностей полумуфт с помощью специальных приборов.

Для нормальной работы подшипников и самой электрической машины соединяемые валы электрической машины и приводного механизма должны составлять единый вал. Устройствами, служащими для соединения валов между собой и передачи вращающего момента, являются муфты. Типы муфт по характеру соединяемых валов и компенсационной способности приведены в табл. 1 и на рис. 5.

Рис. 1. .
а - жесткая фланцевая; б - втулочно-пальцевая; в - упругая с резиновыми пластинами; г -зубчатая; 5 -переменной жесткости (пружинная); 1, 2 - точки измерения радиального и торцевого биения.

Жесткие фланцевые муфты для соединения одноопорного вала электрической машины снабжены центрирующим выступом, диаметр которого должен быть меньше диаметра заточки второй полумуфты на 0,03-0,08 мм. Допустимая окружная скорость стальных муфт - до 70 м/с, чугунных - 30 м/с, материал для изготовления муфт: сталь 35 или чугун СЧ21-40.

Зубчатые муфты состоят из двух зубчатых втулок и двух зубчатых обойм, соединяемых вместе, или одной целой обоймы. Муфты должны работать в масляной ванне. Между муфтой и машиной должен быть зазор, обеспечивающий возможность смещения обоймы полумуфты для контроля зазора между валами. Перекос оси каждой втулки относительно оси обоймы, вызываемой несоосностью соединяемых валов, допускается на угол не более 0°30".
Втулочно-пальцевые муфты изготовляются из чугуна СЧ21-40 или из СтЗ, пальцы из стали 45 и втулки из резины с пределом прочности на разрыв не менее 80 кгс/см2 (8 МПа) и относительным удлинением не менее 300% или из кожи. Зазор в пальцах не должен превышать 0,3-0,6 мм.
Пружинные муфты. Пружины уложены в специальные пазы, расположенные параллельно оси. Пружины закрыты разъемным кожухом, полость которого заполнена консистентной смазкой.
Шпонки. Для передачи вращающего момента от вала к муфте служат шпоночные соединения. Применяются шпонки следующих типов:
1) призматические, поперечное сечение прямоугольное, противоположные грани параллельны; создают ненапряженное соединение, передают только вращающий момент;
2) сегментные, создают ненапряженное соединение, передают небольшие вращающие моменты, применяются для валов диаметром до 58 мм;
3) клиновые, передающие вращающий момент при наличии некоторого осевого усилия;
4) тангенциальные, создают напряженное соединение, передают большие крутящие моменты и осевые усилия, применяются при ударных и знакопеременных нагрузках, устанавливаются на вал под углом 120°, состоят из двух односкосных одного уклона 1:100) клиньев, составленных так, что рабочие грани шпонки взаимно параллельны.
Наибольшее распространение получили призматические шпонки. Призматические шпонки выбирают по наибольшему передаваемому вращающему моменту.

Шпонки изготовляются из стали марок: Стб, сталь 40, сталь 45 с временным сопротивлением на разрыв не ниже 60 кгс/мм2. Размеры призматических шпонок и пазов приведены в табл. Размеры призматических шпонок и пазов электрических машин .

Насадка полумуфт на валы электрических машин производится, как правило, на заводе-изготовителе. В отдельных случаях насадка полумуфт производится и на монтажной площадке.
Для крупных машин предусматривается горячая посадка полумуфт по 2-му классу точности. Натяги, обеспечивающие достаточную прочность посадки, приведены в табл. Натяги при посадке полумуфт .

Перед насадкой полумуфт на валы машин необходимо убедиться, что натяг не более приведенного в табл. Натяги при посадке полумуфт . Натяг определяется как разность диаметра вала и диаметра ступицы полумуфты, замеренных, как показано на рис. 2.

Так же подгоняют шпонку, размеры шпонки и паза должны соответствовать данным табл ., шпонка должна размещаться в пазу вала плотно, с некоторым усилием (зазор по ширине шпонки и паза ступицы 0,05-0,1 мм).


Рис. 2. .
а - измерение диаметра ступицы полумуфты; б - измерение диаметра конца вала,

Нагрев полумуфт производят одним из следующих способов: в масляной ванне; индукционным методом токами промышленной частоты; газовыми или керосиновыми горелками. Нагрев полумуфт контролируют при помощи шаблона, который больше диаметра отверстия полумуфты на величину 2--3-кратного натяга. После насадки полумуфт и охлаждения проверяют торцевое и радиальное биения их. Места установки индикаторов часового типа показаны на рис. 2, значения допускаемых торцевых и радиальных биений полумуфт приведены в табл. допустимые биения полумуфт электрических машин , при больших значениях полумуфты должны протачиваться.

Методы центровки и приспособления. Допуски на центровку валов

Под центровкой валов понимается установка их в такое взаимное положение, когда вал электрической машины и вал производственного механизма (или вал другой электрической машины) являются как бы продолжением друг друга. При этом положения валов относительно друг друга могут различаться в зависимости от типа муфт и их компенсационных способностей в радиальном и осевом направлениях на значения не более приведенных в табл. Допускаемая несоосность валов электрических машин .

Проверка взаимного положения установленных валов осуществляется центровочными приспособлениями по полумуфтам в диаметрально противоположных точках. Угловой перекос валов также замеряется по полумуфтам, причем значения, приведенные в табл., относятся к полумуфтам, замеры на которых произведены на расстоянии 300 мм от оси вала. При измерениях на других расстояниях допуски на угловое (осевое) смещение валов должны быть пропорциональными.
Визуальная проверка взаимного положения валов производится по рискам, нанесенным на обод полумуфты через 90° при помощи центроискателЯ) изображенного на рис. 3. Риски наносятся на соответствующие полумуфты до установки машины на фундамент. Угольник центроискателя устанавливается на обод полумуфты таким образом, чтобы линейка прилегала к торцевой плоскости полумуфты, разметочная линейка 4 устанавливается на обод полумуфты. Риски наносятся чертилкой на ободе полумуфты и на торцевой плоскости по линейкам 4 и 3. Приспособление поворачивается на 90°, точность установки 90° проверяется при помощи движка с установочной линейкой 3.
Поворачивая таким образом приспособление, наносят четыре риски 1 через 90° на ободе полумуфты. Если диаметры двух полумуфт равны, а муфты смещены друг относительно друга на величину а, то необходимо один из валов передвинуть по вертикали либо вбок (рис. 4).
Если линейка, приложенная к рискам полумуфты машины, к которой прицентровывается другая машина, или к полумуфте приводного механизма, совпадает с риской центрируемой машины, то угловое смещение (перекос) валов отсутствует. Если между линейкой и риской имеется угол, то конец центрируемого вала перемещается по вертикали либо вбок до тех пор, пока риски не совпадут.


Рис. 3. .
а - параллельное смещение; б - угловое смещение; 1 - риски.


Рис. 4. . 1 - муфта; 2 - линейка; 3 - установочная линейка; 4 - разметочная линейка.

Точная проверка взаимного положения валов производится при помощи центровочных скоб или приспособлений с индикаторами часового типа, с магнитным или ленточным прижимом, показанных на рис. 5 и 6. Размеры центровочных скоб приведены в табл. Размеры центровочных скоб .

Рис. 5. .
1 - полумуфта установленной машины; 2 - стягивающие хомуты; 3 - наружная скоба; 4 - измерительные болты; 5 - внутренняя скоба; 6 - полумуфта устанавливаемой машины.

Рис. 6. .
а - с ленточным прижимом; б - с электромагнитным прижимом.

Проверку производят при совместном проворачивании валов на 90, 180, 270°. При измерениях должна исключаться возможность изменения зазоров между полумуфтами за счет осевых разбегов вала. При наличии влияния осевых разбегов на измерения необходимо пользоваться двумя центровочными приспособлениями, расположенными по диаметру полумуфт. Результаты измерений записываются, как показано на рис. 7. Разность показаний в диаметрально противоположных точках при измерении на расстоянии 300 мм от оси вала должна быть не более значений, приведенных в табл. Регулировку положения валов производят подбиванием клиньев под фундаментной плитой или регулировкой высотного положения установочных инвентарных приспособлений. Проверку взаимного положения вала приводного двигателя и приводимого механизма, если последний невозможно проворачивать, производят методом обхода одной точкой, т. е. проворачивая вал приводного двигателя, как показано на рис. 8. При проверке взаимного положения одноопорных валов, соединенных жесткими фланцевыми муфтами с центрирующим выступом, производят измерение только углового перекоса (осевого смещения). Взаимное положение валов приводного двигателя и приводимого механизма, соединяемых при помощи промежуточного вала, проверяют после жесткого соединения промежуточного вала с приводным двигателем или приводимым механизмом. В случае отсутствия промежуточного вала проверку производят по струне, как показано на рис. 9.

Рис. 7.

Рис. 8. .
1 - вал двигателя; 2 - центровочная скоба; 3 - полумуфта двигателя; 4 - штифт; 5 - полу муфта приводного механизма; 5 -вал приводного механизма; 7 - щуп.

При регулировке взаимного положения валов электромашинных агрегатов следят, чтобы уклоны шеек валов на крайних подшипниках, измеренные при помощи уровня, были одинаковыми по величине и противоположными по направлению.

Рис. 9. Центровка валов «по струне ».
1 - вал двигателя; 2 - угольник; 3 - визирная струна; 4-вал редуктора клети; 5 - места замера зазоров.

При определении перемещения подшипников при регулировке взаимного положения валов методом расчета пользуются следующими формулами:

где у и Х - горизонтальное и вертикальное перемещения подшипника, ближайшего к муфте; у2, х2 - горизонтальное и вертикальное перемещения подшипника, дальнего от муфты; l1 - расстояние от муфты до ближайшего подшипника; l2 - расстояние от муфты до дальнего подшипника; r - расстояние от центра вала до точки измерения осевого зазора.

Осевой разбег вала в подшипниках скольжения

Осевой разбег ротора при диаметрах вала до 200 мм устанавливается в 2-4 мм, а при диаметрах вала более 200 мм -2% диаметра. Разбег устанавливается в обе стороны от центрального положения якоря (ротора), определяемого магнитным полем.
Осевые зазоры между заточками вала и торцами вкладышей устанавливаются в соответствии с указаниями завода-изготовителя. В случае отсутствия специальных указаний осевые зазоры устанавливаются равными.