Электродинамика - физическая энциклопедия. Становление и развитие классической электродинамики

Окна и двери

Конспект лекций

Утверждено Редакционно-издательским советом университета в качестве конспекта лекций


Рецензенты:

Доктор физико-математических наук, зав. кафедрой Т и ЭФ КГТУ, профессор А.А. Родионов

Кандидат физико-математических наук, зав. кафедрой
общей физики КГУ Ю.А. Неручев

Кандидат технических наук, зав. кафедрой физики КСХА
Д.И. Якиревич

Полунин В.М., Сычев Г.Т.

Физика. Электростатика. Постоянный электрический ток:Конспект лекций /Курск. гос. техн. ун-т. Курск, 2003. 196 с.

Конспект лекций составлен в соответствии с требованиями Государственного образовательного стандарта-2000, Примерной программы дисциплины «Физика» (2000 г.) и рабочей программы по физике для студентов инженерно-технических специальностей КГТУ (2000 г.).

Изложение материала в данной работе предусматривает знание студентами физики и математики в объеме школьной программы, большое внимание уделено трудным для понимания вопросам, что облегчает студентам процесс подготовки к экзамену.

Конспект лекций по электростатике и постоянному электрическому току предназначен для студентов инженерно-технических специальностей всех форм обучения.

Ил. 96. Библиогр.: 11 назв.

Ó Курский государственный
технический университет, 2003

Ó Полунин В.М., Сычев Г.Т., 2003

Введение.. 7

Лекция 1. Электростатика в вакууме и веществе. Электрическое поле 12

1.1. Предмет классической электродинамики.. 12

1.2. Электрический заряд и его дискретность. Теория близкодействия. 13

1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей.. 16

1.4. Поток вектора напряженности электростатического поля. 22

1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме. 24

1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля. 25

1.7. Энергия электрического заряда в электрическом поле. 26

1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом.. 28

1.9. Эквипотенциальные поверхности.. 30

1.10. Основные уравнения электростатики в вакууме. 32

1.11. Некоторые примеры электрических полей, порождаемых простейшими системами электрических зарядов. 33

Лекция 2. Проводники в электрическом поле.. 42

2.1. Проводники и их классификация. 42

2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности.. 43

2.3. Электроемкость уединенного проводника и ее физический смысл. 46

2.4. Конденсаторы и их емкость. 47

2.5. Соединения конденсаторов. 51

2.6. Классификация конденсаторов. 54

Лекция 3. Статическое электрическое поле в веществе.. 55

3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях. 55

3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность) 58

3.3. Поле в диэлектриках. Электрическое смещение. Диэлектрическая восприимчивость вещества. Относительная диэлектрическая проницаемость среды. Теорема Остроградского-Гаусса для потока вектора индукции электрического поля. 61

3.4. Условия на границе раздела двух диэлектриков. 63

3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект. 65

3.6. Основные уравнения электростатики диэлектриков. 72

Лекция 4. Энергия электрического поля.. 75

4.1. Энергия взаимодействия электрических зарядов. 75

4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора. 77

4.3. Энергия электрического поля. Объемная плотность энергии электрического поля 81

4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле. 82

Лекция 5. Постоянный электрический ток.. 84

5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока. 84

5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы.. 85

5.3. Электродвижущая сила (ЭДС), напряжение и разность потенциалов. Их физический смысл. Связь между ЭДС, напряжением и разностью потенциалов. 90

Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока.. 92

6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной
и интегральной формах. 92

6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость. 98

6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам.. 104

6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей 108

6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах. 110

6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (КПД) источника постоянного тока. 112

Лекция 7. Электрический ток в вакууме, газах и жидкостях.. 115

7.1. Электрический ток в вакууме. Термоэлектронная эмиссия. 115

7.2. Вторичная и автоэлектронная эмиссия. 122

7.3. Электрический ток в газе. Процессы ионизации и рекомбинации.. 124

7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы 142

7.5. Электролиты. Электролиз. Законы электролиза. 149

7.6. Электрохимические потенциалы.. 151

7.7. Электрический ток через электролиты. Закон Ома для электролитов. 152

Лекция 8. Электроны в кристаллах.. 161

8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов. 161

8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака. 170

8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе. 171

8.4. Электромагнитные явления на границе раздела сред. 178

заключение.. 193

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 195

Настоящее пособие составлено по материалам, наработанным авторами в процессе чтения лекций по общей физике студентам инженерно-технических специальностей, с относительно малым объемом аудиторных занятий, на протяжении длительного промежутка времени.

Наличие у студентов инженерно-технических специальностей данного конспекта лекций позволит им и лектору более эффективно использовать лекционное время, уделить больше внимания трудным для понимания вопросам, облегчить студентам процесс подготовки к экзамену.

Особо нуждаются в таком пособии, на наш взгляд, студенты заочной, ускоренной и дистанционной форм обучения, которые, приступая к изучению физики, имеют недостаточные навыки адекватного восприятия физических понятий, определений и законов.

Изложение материала в данной работе предусматривает знание студентами физики и математики в объеме школьной программы, поэтому многие понятия в нем не раскрываются в подробностях, а используются как достаточно известные. Кроме того, в данной работе предполагается, что студенты уже изучили или изучают параллельно читаемому курсу соответствующий математический аппарат (дифференциальное и интегральное исчисление, анализ функций, дифференциальные уравнения, векторную алгебру, ряды).

Особенностью пособия является то, что материал представлен в нем в определенной, нетрадиционной последовательности, содержит необходимые рисунки и пояснения.

Несмотря на небольшой объем, предлагаемое пособие содержит изложение вопросов, знание которых необходимо для изучения дисциплин, фундаментом которых являются законы и основные положения физики.

Сокращение объема достигнуто главным образом за счет отказа от рассмотрения отдельных непринципиальных вопросов, а также за счет вынесения некоторых вопросов на их изучение в процессе практических и лабораторных занятий.

Достаточно подробно изложены такие вопросы как зонная теория металлов и полупроводников, ток в вакууме, газах и электролитах.

В основу изложения материала, за редким исключением, обусловленными методическими соображениями, положен эксперимент. Фундаментальные опыты, послужившие основой современного учения об электромагнетизме, описаны достаточно подробно.

Кроме того, уделено определенное внимание разъяснению принципов измерения основных электрических величин, которое, по возможности, следует непосредственно за введением соответствующих физических понятий. Однако описание различных опытов не претендует на полноту и, кроме того, касается лишь только принципов этих опытов, так как студенты слушают лекционный курс с демонстрациями и работают в физических лабораториях. По этой же причине большинство рисунков выполнено в виде простых схем и отражает только качественные для данного случая зависимости без указания единиц измерения и численных значений рассматриваемых величин, что способствует лучшему восприятию студентами изучаемого материала.

Так как в настоящее время имеются задачники, соответствующие университетскому курсу физики, то включение конкретных задач и упражнений по изучаемому разделу не предусмотрено. Поэтому в конспекте лекций приведены только сравнительно немногочисленные примеры, иллюстрирующие применение наиболее важных законов.

Изложение ведется в Международной системе единиц (СИ). Обозначения единиц измерения физических величин даны через основные и производные единицы системы, в соответствии с их определениями в системе СИ.

Пособие может быть использовано аспирантами и преподавателями, имеющими недостаточный опыт работы в вузе.

Авторы будут благодарны всем, кто внимательно просмотрит данное пособие и выскажет определенные замечания по существу. Кроме того, они постараются учесть все рациональные замечания со стороны коллег-физиков, аспирантов, студентов и внести соответствующие исправления и дополнения.

Введение

Настоящий конспект лекций посвящен одному из разделов общего курса физики, разделу "Электричество", который читается студентам тех специальностей и форм обучения, в учебных планах которых этот курс предусмотрен.

В нем акцентируется внимание на то, что электрическая энергия играет большую роль в технике по следующим причинам:

1. Чрезвычайная легкость, с которой электроэнергия преобразуется в другие виды энергии: механическую, тепловую, световую и химическую.

2. Возможность передачи электроэнергии на значительные расстояния.

3. Высокий КПД электромашин и электроаппаратов.

4. Чрезвычайно высокая чувствительность электроизмерительных и регистрирующих приборов и развитие электрических методов измерения различных неэлектрических величин.

5. Исключительные возможности, предоставляемые электрическими приборами и устройствами для автоматики, телемеханики и контроля производства.

6. Развитие электрических, электротермических, электрохимических, электромеханических и электромагнитных методов обработки материалов.

Учение об электричестве имеет свою историю, органически связанную с историей развития производительных сил общества и других областей естествознания. В истории учения об электричестве можно выделить три этапа:

1. Период накопления опытных фактов и установления основных понятий и законов.

2. Период формирования учения об электромагнитном поле.

3. Период формирования атомистической теории электричества.

Истоки представлений об электричестве уходят в Древнюю Грецию. Притяжение легких тел натертым янтарем и другими предметами было известно людям давно. Однако электрические силы были совершенно неясны, возможность их практического применения не чувствовалась, поэтому не было стимула к систематическим исследованиям в этой области.

Только открытия первой половины XYIII в. заставляют резко изменить отношение к электрическим явлениям. Несомненно, этому способствовало изобретение электрической машины (вторая половина XYII в.), на базе которой значительно расширились возможности экспериментирования.

К середине XYIII в. интерес к электричеству возрастает, в исследования включаются естествоиспытатели многих стран. Наблюдение сильных электрических разрядов не могло не навести на аналогию электрической искры и молнии. Электрическая природа молнии была доказана непосредственными опытами В. Франклина, М.В. Ломоносова, Г.В. Рихмана (1752 – 1753). Изобретение громоотвода было первым практическим применением учения об электричестве. Это способствовало развитию общего интереса к электричеству, привлечению в эту область новых исследователей.

Английский естествоиспытатель Р. Симмер (1759) выдвинул плодотворную гипотезу о природе электричества. Развивая идеи Дюфе, Симмер сделал заключение, что тела в обычных состояниях содержат два рода электричества в равных количествах, нейтрализующих действие друг друга. Электризация вызывает избыток в теле одного электричества над другим. Прекрасным подтверждением этой гипотезы было открытие русским академиком Ф. Эпинусом электростатической индукции (1759).

Установленный Ломоносовым закон сохранения энергии и материи был величайшим достижением в физике XYIII в. Содержание открытого Ломоносовым закона сохранения раскрывалось постепенно и сыграло большую роль в развитии учения об электричестве. Так, открытый позднее закон сохранения электрических зарядов является частным проявлением всеобщего закона сохранения материи и движения.

До середины XYIII в. эксперименты по электричеству продолжали быть чисто качественными. Первый шаг на пути к количественному эксперименту был сделан Рихманом, который предложил первый прибор для измерений, названный электрометром (1745). Важнейшим этапом в развитии экспериментальной техники было изобретение в 1784 г. Ш. Кулоном очень чувствительных крутильных весов, сыгравших важную роль в изучении сил различной природы. Этот прибор позволил Кулону установить закон взаимодействия магнитов и электрических зарядов (1785). Законы Кулона послужили основой для развития математической теории электростатики и магнитостатики.

Далее, благодаря опытам Л. Гальвани (1789) и А. Вольта (1792) были открыты контактные электрические явления, что, в свою очередь, привело к изобретению гальванических элементов и к обнаружению электрического тока (1800).

Английские исследователи А. Карлейль и В. Никольсон обнаружили, что гальванический ток, проходя через воду, разлагает ее на водород и кислород. Между физикой и химией установилась взаимообогащающая связь. Электричество приобретает громадное практическое значение, что стимулирует дальнейшее развитие этой отрасли науки.

Улучшение конструкции вольтова столба приводит к открытию новых действий электрического тока. В 1802 г. В.В. Петров с помощью мощного вольтова столба получает электрическую дугу. Дуга Петрова дала начало ряду новых применений тепловых действий тока.

Открытием действия тока на магнитную стрелку Х. Эрстед (1820) положил начало новой главе в теории электричества – учению о магнитных свойствах тока, позволившему включить магнетизм в единую теорию электромагнитных явлений.

Изучение электрического тока продолжало идти в нарастающем темпе. Было установлено, что магнитное действие тока усиливается, если проводник свертывается в спираль. Это открыло возможность конструирования электромагнитных измерителей тока.

В 1820 г. А. Ампер установил закон, по которому определялась сила взаимодействия двух элементарных токов. Опираясь на этот опытный факт, А. Ампер делает предположение об электрической природе магнетизма. Он предполагает, что "электрические токи… существуют вокруг частичек в железе, никеле и кобальте уже до намагничивания. Будучи, однако, направлены во всевозможные стороны, они не могут вызвать никакого результирующего внешнего действия, так как одни из них стремятся притянуть то, что другие отталкивают…". Так появилась в физике гипотеза молекулярных токов, глубина которой вскрылась только в XX в.

В дальнейших исследованиях по электричеству эффективным орудием стал закон, установленный в 1827 г. немецким физиком Г. Омом и получивший название закона Ома.

В этот период началась научная деятельность М. Фарадея. Особенно большое значение в истории физики имеют два открытия Фарадея: явление электромагнитной индукции (1831) и законы электролиза (1834). Фарадей этими открытиями дал теоретическую основу многим техническим применениям электричества. Исследования Э.Х. Ленца по электромагнитной индукции (правило Ленца) и установление закона для теплового действия тока (закон Джоуля-Ленца) способствовали дальнейшему практическому применению электричества.

Экспериментально было установлено, что электрические силы действую через среду, заполняющую пространство между взаимодействующими телами. Исследуя взаимодействие заряженных тел, Фарадей ввел понятие об электрических силовых линиях и дал идею о магнитных и электрических полях – пространствах, где обнаруживается действие электрических сил. Фарадей полагал, что электрические и магнитные поля представляют деформированные состояния некоторой всепроникающей невесомой среды – эфира.

Согласно Фарадею, не электрический заряд действует на окружающие тела, а связанные с зарядом силовые линии. Этим самым Фарадей выдвигал идею теории близкодействия, согласно которой действие одних тел на другие передаются через окружающую среду с определенной скоростью.

В 60-х годах XIX века Д. Максвелл обобщил учение Фарадея об электрических и магнитных полях и создал единую теорию электромагнитного поля. Основное содержания этой теории заключено в уравнениях Максвелла, которые в электромагнетизме играют такую же роль как законы Ньтона в механике.

Следует отметить большое значение работ ряда русских физиков конца XIX в. по экспериментальному подтверждению теории Максвелла. Среди такого рода исследований особо важное имели значение опыты П.Н. Лебедева по обнаружению и измерению давления света (1901).

Почти до конца XIX в. электричество представляли как невесомую жидкость. Вопрос о том, является ли электричество дискретным или сплошным, требовал анализа опытного материала и постановки новых экспериментов. Идею дискретности электричества можно усмотреть в открытых Фарадеем законах электролиза. Основываясь на этих законах, немецкий физик Г. Гельмгольц (1881) высказал предположение о существовании наименьших порций электрического заряда. С этого времени начинается развитие электронной теории, которая объяснила такие явления, как термоэлектронная эмиссия, возникновение катодных лучей. Заслуга создания электронной теории принадлежит, в основном, голландскому физику Г.А. Лоренцу, который в труде "Теория электронов" (1909) органически связал максвелловскую теорию электромагнитного поля с электрическими свойствами вещества, рассматриваемого как совокупность элементарных электрических зарядов.

На базе электронных представлений в первой четверти XX в. была развита теория диэлектриков и магнетиков. В настоящее время развивается теория полупроводников. Исследование электрических явлений привело к современной теории строения вещества. Успехи физики в этом направлении завершились открытием способов освобождения ядерной энергии, что качественным образом подняло науку и технику человечества на новую ступень развития.

Надо особо отметить, что во многих технических применениях электричества, в учении об электричестве и магнетизме первенство принадлежит русским деятелям науки и техники. Так, например, русскими учеными и инженерами были изобретены и использованы для практики гальванопластика и гальваностегия, электросварка, электрическое освещение, электродвигатели, радио. Ими разработаны многие вопросы, представляющие не только большой теоретический интерес, но и имеющие огромное практическое значение. Сюда относятся вопросы физики диэлектриков, полупроводников, магнетиков, физики газового разряда, термоэлектронной эмиссии, фотоэффекта, электромагнитных колебаний и радиоволн и т. д. В последнее время разрабатываются проблемы непосредственного преобразования солнечной энергии в электрическую энергию, создания магнитогидродинамических источников электроэнергии, "топливных элементов". Ученые России играют ведущую роль в исследованиях, направленных на решение важнейшей научно-технической проблемы современности – проблемы создания управляемых термоядерных реакций путем использования магнитных и электромагнитных полей для термоизоляции и нагревания сильно ионизованного газа – плазмы.

За большой вклад в развитии мировой науки российским ученым – физикам И.Е. Тамму, И.М. Франку и П.А. Черенкову (1958), Л.Д. Ландау (1962), Н.Г. Басову и А.М. Прохорову (1964), П.Л. Капице (1978), Ж. И. Алферову (2000 г.), В.Л. Гинзбургу и А.А. Абрикосову (2003) присуждены Нобилиевские премии.

Лекция 1. Электростатика в вакууме
и веществе. Электрическое поле

Предмет классической электродинамики. Электрический заряд и его дискретность. Теория близкодействия. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей. Электрическое поле диполя. Поток вектора напряженности электростатического поля. Теорема Остроградского-Гаусса для электрического поля в вакууме. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля. Энергия электрического заряда в электрическом поле. Потенциал и разность потенциалов электрического поля. Напряженность электрического поля как градиент его потенциала. Эквипотенциальные поверхности. Основные уравнения электростатики в вакууме. Некоторые примеры электрических полей, порождаемых простейшими системами электрических зарядов.


Предмет классической электродинамики

Классическая электродинамика – это теория, объясняющая поведение электромагнитного поля, осуществляющего электромагнитное взаимодействие между электрическими зарядами.

Законы классической макроскопической электродинамики сформулированы в уравнениях Максвелла, которые позволяют определять значения характеристик электромагнитного поля - напряженности электрического поля Е и магнитной индукции В - в вакууме и в макроскопических телах в зависимости от распределения в пространстве электрических зарядов и токов.

Взаимодействие неподвижных электрических зарядов описывается уравнениями электростатики, которые можно получить как следствие уравнений Максвелла.

Микроскопическое электромагнитное поле, создаваемое отдельными заряженными частицами, в классической электродинамике определяется уравнениями Лоренца-Максвелла, которые лежат в основе классической статистической теории электромагнитных процессов в макроскопических телах. Усреднение этих уравнений приводит к уравнениям Максвелла.

Среди всех известных видов взаимодействия электромагнитное взаимодействие занимает первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных (положительных и отрицательных) частиц, электромагнитное взаимодействие между которыми, с одной стороны, на много порядков интенсивнее гравитационного и слабого, а с другой – является дальнодействующим в отличие от сильного взаимодействия.

Электромагнитным взаимодействием определяется строение атомных оболочек, сцепление атомов в молекулы (силы химической связи) и образование конденсированного вещества (межатомное взаимодействие, межмолекулярное взаимодействие).

Законы классической электродинамики неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн, т.е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики.


1.2. Электрический заряд и его дискретность.
Теория близкодействия

Развитие физики показало, что физические и химические свойства вещества во многом определяются силами взаимодействия, обусловленными наличием и взаимодействием электрических зарядов молекул и атомов различных веществ.

Известно, что в природе существуют два вида электрических зарядов: положительные и отрицательные. Они могут существовать в виде элементарных частиц: электронов, протонов, позитронов, положительных и отрицательных ионов и др., а также "свободного электричества", но только в виде электронов. Поэтому положительно заряженное тело представляет собой совокупность электрических зарядов с недостатком электронов, а отрицательно заряженное тело – с их избытком. Заряды различных знаков компенсируют друг друга, следовательно, в незаряженных телах всегда имеются заряды обеих знаков в таких количествах, что их суммарное действие скомпенсировано.

Процесс перераспределения положительных и отрицательных зарядов незаряженных тел, или среди отдельных частей одного и того же тела, под влиянием различных факторов называется электризацией .

Так как при электризации происходит перераспределение свободных электронов, то электризуются, например, оба взаимодействующих тела, причем одно из них положительно, а другое – отрицательно. Количество же зарядов (положительных и отрицательных) при этом остается неизменным.

Отсюда следует вывод, что заряды не создаются и не исчезают, а лишь перераспределяются между взаимодействующими телами и частями одного и того же тела, в количественном отношении оставаясь неизменными.

В этом заключается смысл закона сохранения электрических зарядов, который математически можно записать так:

т.е. в электрически изолированной системе алгебраическая сумма электрических зарядов остается величиной постоянной.

Под электрически изолированной системой понимают такую систему, через границы которой не могут проникать никакие другие электрические заряды.

Надо иметь в виду, что полный электрический заряд изолированной системы является релятивистки инвариантным, т.к. наблюдатели, находящиеся в любой заданной инерциальной системе координат, измеряя заряд, получают одно и то же значение.

Ряд экспериментов, в частности законы электролиза, опыт Милликена с каплей масла, показали, что в природе электрические заряды дискретны заряду электрона. Любой заряд кратен целому числу заряда электрона.

В процессе электризации заряд изменяется дискретно (квантуется) на величину заряда электрона. Квантование заряда является универсальным законом природы.

В электростатике изучаются свойства и взаимодействия зарядов, неподвижных в той системе отсчета, в которой они находятся.

Наличие у тел электрического заряда вызывает взаимодействие их с другими заряженными телами. При этом тела, заряженные одноименно, отталкиваются, а заряженные разноименно – притягиваются.

Под взаимодействием в физике понимают всякое воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения или к изменению их положения в пространстве. Существуют различные виды взаимодействий.

В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой взаимодействия является потенциальная энергия.

Первоначально в физике утвердилось представление о том, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия. Передача взаимодействия происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состоял смысл так называемой теории взаимодействия, получившей название теория дальнодействия. Однако эти представления были оставлены как не соответствующие действительности после открытия и исследования электромагнитного поля.

Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время.

Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие частицы, т.е. взаимодействие передается через "посредника" – электромагнитное поле. Скорость распространения электромагнитного поля равна скорости распространения света в вакууме. Возникла новая теория взаимодействия теория близкодействия.

Согласно данной теории, взаимодействие между телами осуществляется посредством тех или иных полей (например, тяготение посредством гравитационного поля), непрерывно распределенных в пространстве.

После появления квантовой теории поля представление о взаимодействиях существенно изменилось.

Согласно квантовой теории, любое поле является не непрерывным, а имеет дискретную структуру.

Вследствие корпускулярно-волнового дуализма, каждому полю соответствуют определенные частицы. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами (квантами) электромагнитного поля, т.е. фотоны являются переносчиками такого взаимодействия. Аналогично другие виды взаимодействий возникают в результате обмена частиц квантами соответствующих полей.

Несмотря на многообразие воздействий тел друг на друга (зависящих от взаимодействия слагающих их элементарных частиц), в природе, по современным данным, имеется лишь четыре типа фундаментальных взаимодействий: гравитационное, слабое, электромагнитное и сильное (в порядке возрастания интенсивности взаимодействия). Интенсивности взаимодействий определяются константами связи (в частности, электрический заряд для электромагнитного взаимодействия является константой связи).

Современная квантовая теория электромагнитного взаимодействия превосходно описывает все известные электромагнитные явления.

В 60 – 70-х годах века в основном построена единая теория слабого и электромагнитного взаимодействий (так называемое электрослабое взаимодействие) лептонов и кварков.

Современной теорией сильного взаимодействия является квантовая хромодинамика.

Делаются попытки объединения электрослабого и сильного взаимодействий в так называемое "Великое объединение", а также включения их в единую схему гравитационного взаимодействия.

План лекции

    Введение. Предмет классической электродинамики.

    Из истории электродинамики.

    Электродинамика и научно-технический прогресс.

    Электрические заряды.

    Свойства электрических зарядов.

    Закон Кулона.

    Электрическое поле.

    Идеи близко – и дальнодействия.

    Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей.

    Принцип суперпозиции электрических полей.

    Поле диполя.

    Поле бесконечной заряженной нити.

Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Однако, «наблюдать» ещё не значит «исследовать».

Первые научные шаги в изучении электричества и магнетизма были сделаны только в конце 16 века врачом английской королевы Елизаветы Уильямом Гильбертом (1540 – 1603). В своей монографии «О магните, магнитных телах и о большом магните - Земля», Гильберт впервые ввёл понятие «магнитное поле Земли»… Экспериментируя с различными материалами, он обнаружил, что свойством притягивать легкие предметы обладает не только янтарь, потёртый о шёлк, но и многие другие тела: алмаз, хрусталь, смола, сера и т.д. Эти вещества он назвал «электрические», то есть «как янтарь». Так возник термин «электричество».

Первую теорию электрических явлений попытался создать французский исследователь Шарль Дюфэ (1698 – 1739). Он установил, что существует электричество двух родов: «Один род, - писал он, - я назвал «стеклянным» электричеством, другой - «смоляным». Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное…» (1733 г.).

Дальнейшее развитие теория электричества получила в работах американского учённого Бенджамина Франклина (1706 – 1790). Он ввёл понятие «положительное» и «отрицательное» электричество, установил закон сохранения электрического заряда, исследовал «атмосферное электричество», предложил идею громоотвода. Целый ряд созданных им экспериментальных установок стали классикой и уже более 200 лет украшают физические лаборатории учебных заведений (например, «колесо Франклина»).

В 1785 году французский исследователь Шарль Кулон (1736 – 1806) экспериментально установил закон взаимодействия неподвижных электрических зарядов и позднее - магнитных полюсов. Закон Кулона - фундамент электростатики. Он позволил, наконец-то, установить единицу измерения электрического заряда и магнитных масс. Открытие этого закона стимулировало разработку математической теории электрических и магнитных явлений.

Впрочем, долгое время (ещё со времён Гильберта) считалось, что электричество и магнетизм не имеют ничего общего. Только в 1820 году датчанин Ганс Эрстед (1777 – 1851) обнаружил влияние электрического тока на магнитную стрелку, которое он объяснил тем, что «вокруг проволоки с током образуется магнитный вихрь». Иными словами Эрстед установил, что электрический ток является источником магнитного поля. Это положение стало первым из двух основных законов электродинамики. Второе было установлено экспериментально английским физиком Майклом Фарадеем (1791 – 1867). В 1831 году он впервые наблюдал явление «магнитоэлектрической индукции», когда в проводящем контуре возникал индукционный электрический ток при изменении магнитного потока, пронизывающего этот контур.

В конце 19-го столетия разрозненные результаты исследований электромагнитных явлений обобщил молодой шотландский физик Джемс Кларк Максвелл (1831 – 1879). Он создал классическую теорию электродинамики, в которой в частности предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, вычислил объемную плотность энергии электромагнитной волны, рассчитал давление, которое должна производить электромагнитная волна при падении на поглощающую поверхность.

Выводы теории Максвелла нашли экспериментальное подтверждение в работах Генриха Герца (1857 – 1894), П.Н. Лебедева (1866 – 1912). А.А. Майкельсона (1852 – 1931), А.С. Попова (1859 – 1906) и многих других исследователей.

Максвелловская теория электромагнитного поля является фундаментальным обобщением электродинамики, поэтому она по праву занимает почётное место в ряду величайших научных достижений человечества, таких как классическая механика, релятивистская физика и квантовая механика.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Донской государственный технический университет»

(ДГТУ)

Контрольная работа

по дисциплине «Концепции современного естествознания»

Тема № 1.25 Становление и развитие классической электродинамики

(М. Фарадей, Д. Максвелл, Г. Герц).

Электродинамическая картина мира.

Выполнила: Онучина А.А.

студентка 1 курса направление подготовки заочное обучение

группа ИЗЭS11 № зачетной книжки 1573242

Проверил ________________

Ростов-на-Дону


План:

1. История электродинамики……………………………………………………..3

2. Становление и развитие классической электродинамики.…………….…… 5

3. Электродинамическая картина мира.…………………..……………………10

Список используемой литературы……..………………………………….……13


История электродинамики.

Классическая электродинамика – это теория электромагнитных процессов в различных средах и в вакууме. Охватывает огромную совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля.

История электродинамики – это история эволюции фундаментальных физических понятий. До середины 18 века были установлены важные опытные результаты, обусловленное электричеством: притяжение и отталкивание, открыто деление веществ на проводники и изоляторы, существование двух видов электричества. Достигнуты успехи в изучении магнетизма.

Практическое применение электричества началось со второй половины 18 века. С именем Фраклина (1706-1790гг.) связано появление гипотезы об электричестве как особой материальной субстанции. В 1785 году Ш.Кулоном установлен закон взаимодействия двух точечных зарядов. С именем А.Вольта (1745-1827гг.) связан ряд изобретений электроизмерительных приборов. В 1826 году установлен закон Ома. В 1820 году Эрстедом открыто магнитное действие электрического тока. В 1820 году установлен закон, определяющий механическую силу, с которой магнитное поле действует на внесенный в него элемент электрического тока – закон Ампера. Ампером также установлен закон силового взаимодействия двух токов.

Особое значение в физике имеет гипотеза молекулярных токов, предложенная Ампером в 1820 году.

В 1831 году Фарадеем открыт закон электромагнитной индукции. В 1873 году Джеймс Клерк Максвелл (1831-1879гг.) изложил короткие уравнения, ставшие теоретической основой электродинамики. Одним из следствий уравнений Максвелла явилось предсказание ЭМ природы света, он же предсказал возможность существования ЭМ волн. Постепенно в науке сложилось представление об ЭМ поле как о самостоятельной материальной сущности, являющейся носителем ЭМ взаимодействий в пространстве. Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Чаще всего под термином электродинамика понимается классическая электродинамика, описывающая только непрерывные свойства электромагнитного поля. Электромагнитное поле - это основной предмет изучения электродинамики, вид материи, проявляющийся при взаимодействии с заряженными телами. В 1895 году Попов А.С., сделал величайшее изобретение-радио. Оно оказало колоссальное воздействие на последующее развитие науки и техники. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов.

Становление и развитие классической электродинамики

(М. Фарадей, Д. Максвелл, Г. Герц).

Важным шагом в развитии электродинамики было открытие М.Фарадеем явления электромагнитной индукции - возбуждения переменным магнитным полем электродвижущей силы в проводниках, - ставшей основой электротехники.

Майкл Фарадей - английский физик, родился в предместье Лондона в семье кузнеца. Окончив начальную школу, с двенадцати лет он работал разносчиком газет, а в 1804 г. поступил в ученики к переплетчику Рибо, французскому эмигранту, всячески поощрявшему страстное стремление Фарадея к самообразованию. Чтением и посещением лекций Фарадей стремился пополнить свои знания, причем его влекли главным образом естественные науки - химия и физика. В 1813 г. один из заказчиков подарил Фарадею пригласительные билеты на лекции Гемфри Дэви, сыгравшие решающую роль в судьбе юноши. Обратившись с письмом к Дэви, Фарадей с его помощью получил место лабораторного ассистента в Королевском институте.

Научная деятельность Фарадея протекала в стенах Королевского института, где он сначала помогал Дэви в химических экспериментах, а затем начал самостоятельные исследования. Фарадей осуществил сжижение хлора и некоторых других газов, получил бензол. В 1821 году он впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. В течение последующих 10 лет Фарадей занимался исследованием связи между электрическими и магнитными явлениями. Его исследования увенчались открытием в 1831 году явления электромагнитной индукции. Фарадей детально изучил это явление, вывел его основной закон, выяснил зависимость индукционного тока от магнитных свойств среды, исследовал явление самоиндукции и экстратоки замыкания и размыкания.

Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; это явление лежит, например, в основе работы всех генераторов постоянного и переменного тока. Стремление выявить природу электрического тока привело Фарадея к экспериментам по прохождению тока через растворы кислот, солей и щелочей. Результатом этих исследований стало открытие в 1833 г. законов электролиза. В 1845 г. Фарадей обнаружил явление вращения плоскости поляризации света в магнитном поле. В том же году он открыл диамагнетизм, в 1847 году - парамагнетизм, также в 1833 году он изобрел вольтметр.

Идеи Фарадея об электрическом и магнитном полях оказали большое влияние на развитие всей физики. В 1832 году Фарадей высказал мысль о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий с конечной скоростью, а в 1845 году он впервые употребил термин «магнитное поле».

Открытия Фарадея завоевали широчайшее признание во всём научном мире. В честь Майкла Фарадея Британское химическое общество учредило медаль Фарадея – одну из почётнейших научных наград.

Пытаясь объяснить явление электромагнитной индукции на основе концепции дальнодействия, но встретившись с затруднениями, он высказал предположение об осуществлении электромагнитных взаимодействий по средством электромагнитного поля, на основе концепции близкодействия. Это положило начало формированию концепции электромагнитного поля, оформленную Д.Максвеллом. Джеймс Клерк Максвелл - английский физик. Родился в Эдинбурге. Под его руководством была создана известная Кавендишская лаборатория в Кембридже, которую он возглавлял до конца своей жизни.

Работы Максвелла посвящены электродинамике, молекулярной физике, общей статистике, оптике, механике, теории упругости. Наиболее весомый вклад Максвелл сделал в молекулярную физику и электродинамику. В кинетической теории газов, одним из основателей которой он является, установил функции распределения молекул по скоростям, основанный на рассмотрении прямых и обратных столкновений, развил теорию переноса в общем виде, применив ее к процессам диффузии, теплопроводности и внутреннего трения, ввел понятие релаксации. В 1867 году первый показал статистическую природу второго начала термодинамики, в 1878 году ввел термин "статистическая механика".

Самым большим научным достижением Максвелла является созданная им в 1860-1865 годах теория электромагнитного поля. В своей теории электромагнитного поля Максвелл использовал новое понятие - ток смещения, дал определение электромагнитного поля и предсказал новый важный эффект: существование в свободном пространстве электромагнитного излучения, электромагнитных волн и его распространение в пространстве со скоростью света. Ученый также сформулировал теорему в теории упругости, установил соотношения между основными теплофизическими параметрами, развивал теорию цветного зрения, исследовал устойчивость колец Сатурна, показав, что кольца не являются твердыми или жидкими, а представляют собой рой метеоритов. Максвелл сконструировал ряд приборов. Он был известным популяризатором физических знаний.

1) магнитное поле порождается движущимися зарядами и переменным электрическим полем (током смещения);

2) электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;

3) силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников - магнитных зарядов, подобных электрическим);

4) электрическое поле с незамкнутыми силовыми линиями (потенциальное поле) порождается электрическими зарядами - источниками этого поля.

Из теории Джеймса Максвелла вытекает конечность скорости распространения электромагнитного взаимодействия и существование электромагнитных волн. Максвелловская теория электромагнитного поля является фундаментальным обобщением электродинамики, поэтому она по праву занимает почётное место в ряду величайших научных достижений человечества, таких как классическая механика, релятивистская физика и квантовая механика. В 1861-1862 годах Джеймс Максвелл публикует свою статью о физических силовых линиях. Основываясь на практическом совпадении скорости распространения электромагнитных возмущений и скорости света, Максвелл предположил, что свет тоже является электромагнитным возмущением. И эта, казалось бы, абсолютно фантастическая для того времени идея вдруг начала обрастать экспериментальными подтверждениями.

И все бы вроде ничего, да вот в 1885 году некий преподаватель школы для девочек в Базеле Иоганн Якоб Бальмер, после своих экспериментов, пишет коротенькую, буквально на пару страничек, статью где говорится: «Обратите внимание на спектральные линии водорода». Которая ввела физиков-теоретиков в состояние ступора на ближайшие два десятилетия. Четкие спектральные линии серии Бальмера наглядно продемонстрировали мировому физическому научному сообществу, что не всё так просто в этом мире.

Развитие классической электродинамики после Максвелла шло по нескольким направлениям, из которых отметим два основных. Во-первых, совершенствовалась математическая сторона теории Максвелла и были получены некоторые новые результаты. Во-вторых, произошло объединение теории электромагнитного поля с основными идеями теории строения вещества. Последнее направление привело к созданию электронной теории.

Также хочу отметить выдающегося немецкого физика Генриха Рудольф Герца. Окончил Берлинский университет, с 1885 года по 1889 год был профессором физики Университета в Карлсруэ. С 1889 года - профессор физики университета в Бонне.

Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн.

Он построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его теория электродинамики не подтвердилась опытами и позднее уступила место электронной теории Хендрика Лоренца. Результаты, полученные Герцем, легли в основу создания радио. В 1886 году Герц впервые наблюдал и дал описание внешнего фотоэффекта. Герц разрабатывал теорию резонансного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. Именем Герца с 1933 года называется единица измерения частоты Герц, которая входит в международную метрическую систему единиц СИ.

Физика - одна из важнейших наук, изучаемых человеком. Ее присутствие заметно во всех сферах жизни, иногда открытия даже меняют ход истории. Поэтому великие физики так интересны и значимы для людей.

Электродинамика - это область физики, в которой изучаются свойства и закономерности по­ведения электромагнитного поля и движение электрических зарядов, взаимодействующих друг с другом посредством этого поля.

Многие великие учёные физики посвятили свои жизни попыткам найти ответы на необходимые человечеству вопросы. Мир не стоит на месте, все течет и меняется, планета вращается вокруг оси, гроза всегда приходит с молнией и громом, а листья падают на землю. И именно простые на первый взгляд вещи пробудили в человеке интерес к точным и естественным наукам.

История развития классической электродинамики является поучительным примером того, как математизация естественно научной дисциплины и переход к изящному (хотя и достаточно сложному) языку описания повлекли за собой качественный скачок в понимании целого ряда явлений природы, часть из которых была первоначально предсказана теоретически (“на кончике пера”), а потом получила блестящее экспериментальное подтверждение. В настоящей теме будет содержаться достаточно большое количество математических формул, приводимых лишь с целью иллюстрации красоты и компактности языка математики.

Непрерывные распределения зарядов. Входящие в выражения для электростатических и магнитостатических полей (9_4) и (9_8) суммы в случае макроскопических заряженных тел содержат очень большое число слагаемых, соответствующих вкладам в поля от точечных зарядов. Их вычисление неудобно с чисто “технической” точки зрения: математическая операция суммирования более трудоемка, чем, например, интегрирование (сказанное относится к аналитическим расчетам, при компьютерном счете суммирование предпочтительнее взятия интегралов, однако в 19 веке подобной альтернативы в математике не существовало). Переход к интегрированию требовал приближенной замены дискретного распределения элементарных зарядов на непрерывное , характеризуемое плотностью электрического заряда (отношение величины заряда к объему содержащего его небольшого, но макроскопического элемента пространства):

Естественно, что замена (1) приводила к “сглаживанию” рассчитываемых макроскопических полей по сравнению с реальными микроскопическими, сильно изменяющимися на сравнимых с размером атома расстояниях. Описанный переход к непрерывному распределение зарядов существенно упрощал расчеты, не снижая их практическую ценность (наука и техника 19 века еще не доросли до эффектов, происходящих на микроскопическом уровне организации материи).

Математический формализм. Переход к непрерывным распределениям зарядов и токов позволил переписать законы электро и магнитостатики сразу в нескольких математических формах, эквивалентных по физическому смыслу, но существенно различающихся по технике выполнения конкретных расчетов:

интегральные формулировки:



дифференциальные формулировки:

(3)

;

расчет полей через скалярный и векторный

потенциалы :



Т.о. адекватное описание одних и тех же законов естествознания возможно на различных языках математики .

Операторы . В начале 20 века в математике были введены новые объекты - операторы , без использования которых современная физика была бы немыслима. Понятие оператора является естественным обобщением традиционного для классической математики понятия функции. Если под функцией понимается закон (правило, отображение), по которому одному числу (набору чисел) ставится в соответствие другое число (набор чисел), то под оператором подразумевают закон, по которому одному объекту (группе объектов) ставится в соответствие другой объект (группа). Наиболее часто встречаются операторы, действующие на функции (операторы умножения на число, дифференцирования, интегрирования и т.д.) или векторы (оператор поворота, проектирования и т.д.). Весьма полезной оказалась идея определения математических операций над операторами. Например, под произведением двух операторов подразумевается оператор, выполняющий последовательно действия каждого из перемножаемых операторов. Для операции умножения операторов в общем случае не выполняется свойство коммутативности:

(5)

.

Использование языка операторов существенно сокращает запись многих математических формул и делает их более “элегантными”. Так введение лишь одного дифференциального оператора “набла”



при помощи стандартным образом определенных операций скалярного (,) и векторного [ , ] умножения позволяет записать системы уравнений (3) и (4) в весьма компактной форме:

(3’)

;

(4’)

,

.

В последних равенствах использован оператор Лапласа:

(7)

.

Помимо краткости записи преимущество операторного метода состоит в том, что. с самим оператором набла можно обращаться почти так же, как с обычным вектором, что, несомненно, облегчает громоздкие выкладки.

Закон электромагнитной индукции Фарадея. Долгое время электрические и магнитные явления считались независимыми, хотя даже на уровне магнитостатики это не совсем верно: магнитостатическое поле порождается постоянными токами, существование которых в веществе невозможно без наличия электрического поля. Фарадей экспериментальным путем установил, что изменяющееся во времени магнитное поле может порождать электрическое . Это электрическое поле в отличие от порождаемого зарядами потенциального электростатического является вихревым, т.е. его линии представляют собой замкнутые кривые (рис. 11_1). Открытый Фарадеем закон индукции впоследствии имел колоссальное практическое значение, поскольку открыл весьма удобный и дешевый способ преобразования механической энергии движения источников магнитного поля в электрическую, ныне лежащий в основе промышленного производства электроэнергии.

С точки зрения математической записи уравнений для поля открытое Фарадеем явление требует видоизменения системы уравнений (6):

(10)

.

Гипотеза Максвелла. Рассмотрев совместно систему уравнений (7) и (10) Максвелл обратил внимание на следующие ее недостатки:

1. Указанная система несовместна с законом сохранения заряда.

2. Система оказалась весьма несимметричной даже для случая описания электромагнитного поля в пустом пространстве (=0 и j=0 ).

Несоответствие уравнений закону сохранения заряда было достаточным аргументом для того, чтобы усомниться в их истинности, поскольку законы сохранения носят весьма общий характер. Оказалось, что существует множество способов видоизменения системы уравнений (7), (10), приводящих их в соответствие с законом сохранения. Максвеллом был выбран простейший из возможных путь, приводящий систему к симметричному виду в случае ее использования для описания полей в пустом пространстве. В последнее уравнение было добавлено слагаемое, описывающее возможность генерации вихревого магнитного поля изменяющимся электрическим (“ток смещения”):

(11)



.

Чисто математическими следствиями из видоизмененной системы уравнений Максвелла были утверждение о сохранении энергии в электромагнитных процессах и теоретический вывод о возможности независимого от зарядов и токов существования поля в виде электромагнитных волн в пустом пространстве. Это последнее предсказание нашло блестящее экспериментальное подтверждение в знаменитых опытах Герца и Попова, положивших основу современной радиосвязи. Рассчитываемая из системы (11) скорость распространения электромагнитных волн оказалась равной экспериментально измеренной скорости распространения света в вакууме, что означало объединение практически ранее независимых разделов физики электромагнетизма и оптики в одну законченную теорию.

Проблема существования магнитного монополя. Колоссальный успех теории Максвелла продемонстрировал возможность теоретического поиска новых законов природы на основе анализа математических уравнений, описывающих ранее известные закономерности, с обязательной экспериментальной проверкой таким образом “угадываемых” результатов.

Симметричная для описания электромагнитных полей в пустом пространстве система уравнений Максвелла (11) существенно “теряет свою красоту” при учете электрических зарядов и токов: создаваемое электрическими зарядами потенциальное поле Е не имеет аналога в магнитных взаимодействиях. Эта ассиметрия послужила поводом для постановки множества экспериментов по поиску магнитных монополей (или магнитных зарядов) - гипотетических частиц, являющихся источником потенциального магнитного поля и теоретических исследований их предполагаемых свойств. До настоящего времени надежных экспериментальных данных о существовании магнитных монополей не получено.

Противоречия между электродинамикой и классической физикой. Сформулированные в виде законченной теории и выдержавшие экспериментальную проверку законы электромагнетизма Максвелла оказались в противоречии с принципами, лежащими в основе классического миропонимания Галлилея - Ньютона:

1. Удовлетворяющие принципу относительности Галилея классические силы могут зависеть от времени, расстояний между телами и их относительных скоростей, т.е. величин, не изменяющихся при переходе из одной инерциальной системы отсчета в другую. Магнитостатические поля и связанные с ними силы Лоренца являются функциями скоростей зарядов по отношению к наблюдателю и различны в разных инерциальных системах отсчета. Т.о. явления природы, обусловленные электромагнитными взаимодействиями, с точки зрения классической физики в различных инерциальных системах отсчета должны протекать по-разному.

2. Получаемая в результате решения уравнений Максвелла скорость распространения электромагнитных волн в пустом пространстве оказалась независящей от скоростей движения как источника этих волн, так и наблюдателя. Этот вывод полностью противоречило классическому закону сложения скоростей.

Все попытки видоизменить уравнения электромагнетизма так, чтобы привести их в согласие с принципами классического естествознания приводили к теоретическому предсказанию эффектов, ненаблюдаемых на эксперименте, и были признаны несостоятельными.

Преобразования Лоренца. Поскольку уравнения Максвелла не были инвариантными относительно преобразований Галилея, т.е. вопреки требованиям принципа относительности изменяли свою форму при переходе из одной инерциальной системы отсчета в другую, по правилам, задаваемым соотношениями:

(12) ,

Лоренцем был поставлен естественный вопрос об отыскании таких преобразований координат и времени, которые не изменяли бы уравнений Максвелла и были при этом максимально простыми. Эта задача была им решена как чисто математическая:

(13) .

Сравнивая преобразования Галилея (12) и Лоренца (13), легко заметить, что последние переходят в классические в случае скоростей, малых по сравнению со скоростью света с . Т.о. предложенные Лоренцем соотношения удовлетворяли принципу соответствия , согласно которому новая теория должна согласовываться со старой о областях, где последняя была надежно проверена на экспериментах. Кроме того, следующий из преобразований Лоренца релятивистский закон сложения скоростей оставлял скорость света инвариантной относительно переходя в любую инерциальную систему отсчета, движущуюся со скоростью, меньшей с .

Опыты Майкельсона. Следующее из уравнений Максвелла утверждение о постоянстве скорости света при переходах в другие системы отсчета полностью противоречило классическим представлениям. Вставал естественный вопрос о его экспериментальной проверке. Весьма изящный эксперимент был осуществлен Майкельсоном с помощью специально сконструированного им прибора - интерферомета , позволяющего сравнивать времена распространения световых сигналов вдоль двух взаимно перпендикулярных отрезков прямых, ограниченных на концах зеркалами (рис. 11_2). Идея опыта состояла в попытке зарегистрировать различие скоростей распространения света вдоль разных плеч интерферометра, вызванное орбитальным движением Земли. Опыты с интерферометром Майкельсона дали отрицательные результаты: скорость света с высокой точностью оказалась независящей от соотношения направлений его распространения и движения Земли .

Многочисленные попытки спасти классический закон сложения скоростей путем введения гипотетической среды - эфира , в которой распространяются световые колебания потерпели полную неудачу свойства предполагаемой Среды оказывались весьма экзотическими, никаких экспериментальных подтверждений ее реального существования получено не было.

Выход из возникшей на рубеже веков в естествознании тупиковой ситуации был предложен А. Эйнштейном, создавшим специальную теорию относительности (СТО), в которой на основе двух хорошо проверенных на эксперименте постулатов (утверждений) строится внутренне непротиворечивая (хотя и весьма странная с точки зрения классического естествознания и житейского опыта) концепция, объясняющая преобразования Лоренца и предсказывающая ряд новых явлений, реально зарегистрированных в природе.

ЭЛЕКТРОДИНАМИКА к л а с с и ч е с к а я.

В Э. метрика пространства-времени и пространственно-временные системы координат событий, т. е. свойства гра-витац. фона, обычно (для простоты) считаются не зависящими от эл--магн. полей и движений заряж. вещества. Самосогласование Э. и ОТО, в принципе, осуществляется совместным решением связанных ур-ний Максвелла и ур-ний Эйнштейна, учитывающих кривизну пространства-времени и её изменение вследствие перераспределения энергии-импульса эл--магн. поля и вещества. [Существуют многочисл. теоретич. попытки связать эл--магн., слабое и сильное взаимодействия и само возникновение соответствующих зарядов частиц с топологич. и метрич. особенностями так или иначе расширенного пространства-времени, представляющегося многомерным, напр. 10- или 11-мерным, но обнаруживающего "лишние", "скрытые" измерения только для малых, напр. планковских, длин (~10 -33 см) или для сверхвысоких энергий частиц (см. Великое объединение, Калуцы - Клейна теория, Единая теория поля) . ]

Относительность описания . Опираясь на релятивистскую ковариантность законов физики и идею близкодействия зарядов посредством поля (см. Взаимодействие ),можно ограничиться формулировкой локальных, дифференц. ур-ний Э. в одной, удобнее всего - в к--л. инерциальной (декартовой) системе координат (системе отсчёта) . В соответствии с эквивалентности принципом Эйнштейна описание физ. явлений представляется наиб. простым именно в локально инерциальной системе отсчёта, к-рая может быть реализована в окрестности любого события (точки пространства-времени), будучи связанной со свободно "падающим" телом отсчёта. Тогда локально тяготение не проявляется: метрич. тензор g ab сводится к диагональному h ab с сигнатурой (+ - - -) (плоское Минковского пространство-время ).Согласно относительности принципу , описание любых, в т. ч. эл--магнитных, процессов не зависит (численно) от выбора различных инерциальных систем отсчёта, если в каждой из них начальные и граничные условия заданы одинаково (численно). Вместе с тем характеристики одного и того же процесса, конечно, выглядят по-разному из разл. систем отсчёта, поскольку ему отвечают в них различные начальные и граничные условия для полей и частиц.

Заряд и сила . Существенно, однако, что величина элек-трич. заряда тел (частиц) не зависит не только от выбора системы отсчёта (даже неинерциальной), но и от скорости движения тела (инвариантность заряда). Это положение исходит из следующего совместного определения элек-трич. заряда q , электрического Е и магнитного В полей, утверждающего в качестве основополагающего физ. закона (основанного на всей совокупности эксперим. данных Э.) ф-лу для силы Лоренца (в рамках идеализации точечного заряда, движущегося с определённой скоростью v ):



Здесь p = gm u --импульс заряж. тела с массой покоя m , фактор g= 1/ , p a =mc u a - ковариантный вектор энергии-импульса (4-импульс), u a =g ab u b , u b дx b t(gс , gu ) - контравариантная 4-скорость, - собств. время тела, определяемое длиной его мировой линии x b (t), dt = gd t. (Здесь и далее используется Гаусса система единиц .)Инвариантность заряда экспериментально проверяется возможностью описать кинематику его движения в заданных полях в любых системах отсчёта и для любых нач. скоростей, используя, согласно (1), одну и ту же величину q (точнее, q/т) , определяющую эффективность ускорения заряда. Сравнение зарядов тел q n , п= 1, 2, ... . производится, напр., путём измерения отношения сил F n = q n E , действующих на неподвижные заряды (в одном и том же поле Е ) . За единицу электрич. заряда принимается такой заряд, к-рый в вакууме под действием равного себе заряда на расстоянии r = 1 см от него испытывает силу в 1 дин (согласно Кулона закону ,величина силы взаимодействия двух неподвижных точечных зарядов равна q 1 q 2 /r 2 ) . Квантование заряда, т. е. его кратность величине заряда электрона е = 4,8 10 -10 ед. СГС, или е/ 3 (), в Э. вводится как дополнит. наблюдат. факт. Так, экспериментально установлено, что величина заряда протона равна заряду электрона с относит. погрешностью <=10 -21 .

Аналогичным образом, согласно (1) или (1"), с заменой скорости , полей Е В и В - Е , а также скалярного заряда q на псевдоскаляр (для сохранения пространственных чётности Е и нечётности В ) , можно ввести дуальную силу Лоренца и определить точечный магн. заряд . Здесь


есть дуальный (антисимметричный) псевдотензор эл--магн. поля, e abm v - Леви-Чивиты символ . Используя идею калибровочной инвариантности, П. Дирак (P. Dirac) в 1931 показал, что элементарный магн. заряд должен быть тоже квантован и связан с соответствующим элементарным электрич. зарядом,/ 2е, l= 0, + 1, + 2,... (см. Магнитный монополь) . Реальные магн. заряды в природе не обнаружены.

Поле . Ф-ла (1) одновременно даёт и определение клас-сич. эл--магн. поля. С этой целью в каждой точке необходимо измерить ускорения, по крайней мере, трёх пробных частиц (с известными зарядами и массами), напр. одной первоначально покоившейся (для нахождения компонент вектора напряжённости электрич. поля Е )и двух движущихся в ортогональных направлениях (для нахождения компонент псевдовектора индукции магн. поля В ) . Согласно Лоренца преобразованиям ,компоненты векторов сил и, следовательно, электрич. и магн. полей меняют свои значения при переходе из одной ("штрихованной") инерц. системы отсчёта в другую, относительно к-рой первая движется со скоростью и :


Здесь индексами || и | отмечены компоненты полей соответственно вдоль и поперёк вектора скорости u ; g = = 1/ . Т. о., разделение поля на электрическое и магнитное зависит от выбора системы отсчёта. Поэтому удобно использовать единый (антисимметричный) тензор эл--магн. поля F ab (в 1"); тогда при преобразованиях Лоренца х a = L a b х" b закон трансформации полей (2) записывается в виде F ab = L m a L v b F" m v . Вместе с тем инвариантными остаются две, и только две (в вакууме), алгебраич. комбинации полей:

Динамика зарядов . Для заданных внеш. полей ф-ла (1) позволяет полностью описать движение любой системы зарядов. Однако задача значительно усложняется при учёте взаимодействия зарядов посредством создаваемого ими поля, к-рое имеет конечную скорость распространения и обладает собств. динамикой. В частности, взаимодействие любых двух произвольно движущихся зарядов не является центральным и не подчиняется третьему Ньютона закону механики , а энергия системы заряж. тел благодаря их эл--магн. взаимодействию зависит от состояния поля и не равна сумме энергий каждого из тел в отдельности. Система заряж. тел подчиняется законам сохранения энергии, импульса и момента импульса только при учёте соответствующих величин, связанных с эл--магн. полем (см. ниже).

Ток. В Э. для описания генерации поля точечными элек-трич. зарядами q n , движущимися по траекториям r n (t) , используют понятия о плотности заряда r и плотности тока j :

где d-дельта-функция Дирака. Отвлекаясь от точечности зарядов при наличии большого их числа (приближение сплошной среды), вводят плотность r m = dq m /dV и плотность тока j m = r m dr m /dt сгустка зарядов dq m сорта т , движущихся в физ. бесконечно малом объёме dV по мировой линии x a m (t) = (ct, r m (t )). Дальнейшее суммирование по всем скоростям dr m /dt зарядов, проходящих через объём dV в окрестности точки r в момент времени t , приводит к полному 4-вектору плотности тока, характеризующему упорядоченное движение зарядов:

Он удовлетворяет ур-нию непрерывности j a , a = 0 (запятая с индексом a обозначает д/дх a ) , к-рое является локальным выражением заряда сохранения закона .Согласно послед-нему, полный заряд в к--л. объёме V , ограниченном замкнутой поверхностью S, не меняется, если заряды не пересекают эту поверхность. [Аналогичные утверждения распространяются на магн. заряды и их 4-псевдовектор плотности тока .]

Следует отметить, что излагаемая здесь последовательность согласования "правил" физ. измерения электродина-мич. величин и ур-ний Максвелла не является единственно возможной. Для Э. принципиальна лишь возможность такого согласования.

Особенности динамики поля с источниками

Согласно эксперим. данным, поток электрич. поля Е через S пропорционален суммарному заряду в объёме V:

Для неподвижных зарядов это утверждение следует из закона Кулона, но в Э. справедливо и при произвольном движении зарядов внутри поверхности S, несмотря на существование излучения. Тем самым устанавливается (и экспериментально подтверждается) фундам. свойство заряда Q , к-рое может служить новым способом его измерения, формально независимым от старого (1) и не апеллирующим к кинематике заряда.

Этот шаг однозначно определяет ур-ния Э. Действительно, формулировка (5) в дифференц. форме и требование её релятивистской ковариантности, т. е. выполнения при любой скорости движения инерциальной системы отсчёта с учётом преобразований координат, поля, плотностей заряда и тока, приводят к следствию

В результате магн. поле можно рассматривать как неизбежный релятивистский результат движения электрич. зарядов (тока j ) и нестационарности создаваемого ими электрич. поля (тока смещения дE /дt) .

Аналогичная аргументация по отношению к закону сохранения (в частности, отсутствия) магн. зарядов даёт закон эл--магн. индукции:

С учётом ур-ний непрерывности j a ,a = 0 и =0 независимыми оказываются только правые ур-ния в (6) и (7). (Об их записи в интегр. форме, о граничных и нач. условиях, условиях излучения и о единственности решения см. Максвелла уравнения .)Полевые ур-ния (6), (7) совместно с ур-ниями движения всех зарядов под действием силы Лоренца лежат в основе Э. В релятивистски ковариантной форме ур-ния (6) и (7) имеют вид:

Т. о., электрич. и магн. 4-плотности тока являются локальными источниками полей. Поле, порождённое движущимися зарядами, согласно (8), распространяется в свободное от них пространство независимо от источников с одной и той же скоростью с (рис. 1). Она не зависит также от выбора инерциальной системы отсчёта ввиду явной ковариантности (8). Тем самым Э. предоставляет фактич. основу для второго постулата спец. теории относительности, требующего существования инвариантной скорости распространения сигналов.

Рис. 1 . Силовые линии электрического поля Е заряда q , начавшего двигаться из точки о со скоростью u .

Источники . Вместе с тем скорость u движения зарядов как источников поля в ур-ниях Максвелла формально может быть любой, в частности превышающей скорость света в вакууме [О. Хевисайд (О. Heaviside), 1889; У. Том-сон (W. Thomson), 1901; А. Зоммерфельд (A. Sommerfeld), 1904]. Последняя возможность может быть обеспечена (даже если не иметь в виду гипотетич. тахионы )совокупным движением реальных зарядов под действием разл. "зайчиков", напр. плоских импульсов фотонов, электронов или др. частиц, наклонно падающих на плоский экран, либо под действием "ножниц", где роль "зайчика" играет точка пересечения образующих "ножницы" двух лезвий. В силу неравенства u>c создаваемое "зайчиком" пятно зарядов с плотностью r может отвечать сколь угодно большой плотности тока j = ru .

В подобных и др. случаях, когда движение определённых зарядов допустимо считать заранее известным, в правых частях ур-ний (8) или (6), (7) аддитивно выделяют т. н. сторонние источники j a ст = (c r ст, j ст) и -- заданные в пространстве-времени - 4-плотности тока, для к-рых

Ограничения . Границы применимости Э. в зависимости от анализируемых реальных ситуаций и преследуемых целей могут определяться самыми различными причинами. Ниже указаны лишь наиболее типичные из них.

Важнейшим свойством ур-ний Максвелла является их линейность: поля, созданные двумя независимыми системами источников j a 1ст,и j a 2cт,, подчиняются суперпозиции принципу ,т. е. сумма этих полей является решением ур-ний при совместном действии источников: j a ст =j a 1ст +j a 2ст, . Нарушение принципа суперпозиции полей происходит за счёт нелинейного возбуждения новых токов j a , , индуцируемых j a ст, при достаточно сильных полях в среде (либо в вакууме из-за квантовых эффектов рождения и уничтожения частиц, прежде всего электрон-позитронных пар, в полях |F ab |Е с В с = т 2 е с 3 / 4,4 . 10 13 Гс). Согласно квантовой электродинамике, вследствие рождения пар частица-античастица в достаточно сильных полях и при локализации заряж. частиц (массой т )в области с размерами порядка комптоновской длины волны / gтс возникает ограничение и на их макс. плотность тока Здесь I А = gтс 3 - т. н. ток Аль-вена, отвечающий макс. концентрации частиц с зарядом е , движущихся прямолинейно друг за другом на расстоянии своего эл--магн. классич. радиуса e 2 / gmc 2 = со скоростью u~c в трубке с поперечным размером ~; g=1/ , a= е 2 / . Для электронов

I A /g17 кА.

Симметрия . При локальных (точечных) преобразованиях координат и времени максимальную Ли группу симметрии, не меняющую вид ур-ний Максвелла с токами (8), составляют наряду с линейными 6-параметрич. преобразованиями Лоренца х a x" a = L" b a x b не только очевидные 4-параметрич. преобразования сдвига х a х" a = х a + а a (см. Пуанкаре группа )и 1-параметрич. масштабные преобразования x a х" a = bх a , но и нелинейные 4-параметрич. конформные преобразования (Н. Bateman, E. Cuningham, 1909)

Сопровождающие (9) конформные преобразования полей Е , В и токов j a , являются линейными, но явно зависят от х a ; они используются при построении нелинейных версий ур-ний Э. и нахождении их точных решений. Ур-ния Максвелла (8) не изменяются также при локальных внутренних, т. е. не затрагивающих пространственно-временные координаты, д у а л ь н ы х п р е о б р а з о в а н и я х:



Для свободных полей они известны как 1-параметрич. п р е о б р а з о в а н и я Л а р м о р а-Р а й н и ч а

и связаны с поляризац. вырождением эл--магн. волн. Однако преобразования (10"), как и (9), не сохраняют вид ур-ний движения (1) электрич. (или магн.) зарядов.

Магнитный заряд . Явное согласование дуальной симметрии ур-ний Максвелла и ур-ний движения имеет место только в случае дуально заряженных частиц, несущих одновременно электрич. q n и магн. заряды. Последние преобразуются в соответствии с (10") по правилу

не изменяющему полную силу Лоренца, действующую на n -ю заряж. частицу:

Если отношение равно одной и той же (любой) величине для всех частиц, то дуальный поворот на угол приводит ур-ния Э. (8), (11) к обычной форме без магн. монополей (=0) с наблюдаемыми эфф. электрич. зарядами частиц q" n = и наблюдаемыми полями E " , В " из (10) [Л. Пёйдж (L. Page), H. Адам (N. Adam), 1940]. Универсальность отношения для известных частиц экспериментально подтверждается с большой относит. точностью (напр., для электронов и протонов относит. погрешность не превышает ~10 -26). Это обстоятельство, позволяя исключить дуально заряженные частицы и, в частности, "чистый" магн. монополь (для к-рого отношение по величине и по знаку должно быть обратно таковому для "чистого" электрич. заряда), скрывает дуальную симметрию однозарядовой Э. Тем не менее и в ней наиб. фундаментальными естественно считать те наблюдаемые, к-рые инвариантны относительно дуальных преобразований (а не сами электрич. и магн. поля), напр. дуально симметричную силу Лоренца (11), эфф. заряд q" n и компоненты T m v тензора плотности энергии-импульса эл--магн. поля (А. Зоммерфельд, 1928):


Даже в отсутствие "чистых" магн. монополей в Э. допустимы высшие магн. мультиполи, начиная с диполя, образованные магнитно нейтральной совокупностью монополей (ср. двухкварковую структуру мезонов и трёхквар-ковую структуру барионов ).Однако эксперименты фактически исключают эту возможность, показывая, что все магн. мультиполи образованы электрич. токами. Так, в 1951 в экспериментах по рассеянию нейтронов в неоднородном магн. поле В =В (х)у 0 (рис. 2) было показано


Рис. 2. Силы, действующие на "токовый" d m и "моно польный" магнитные диполи, ориентированные против оси х° и находящиеся в неоднородном магнит ном поле В=В(х)у° .

[К. Г. Шал (С. G. Shull) и др.], что их магн. дипольный момент d m имеет токовую [Ю. Швингер (J. Schwinger), 1937], а не монопольную [Ф. Блох (F. Bloch), 1936] природу: нейтроны движутся под действием силы F = (d m B ) , характерной для рамки с электрич. током I=cd m / pr 0 2 (радиуса r 0), но не силы В , характерной для двух. разноимённых монополей b= + расположенных на расстоянии l . При =d m различие указанных сил F - [d m rotB ] обусловлено различным взаимодействием диполей со сторонними токами j =(c/ 4p )rotВ , создающими неоднородное магн. поле В (r ) .

Электромагнитная асимметрия . Т. о., вещество устроено дуально несимметрично, из одних лишь электрич. зарядов. Впрочем, по крайней мере в макроскопич. Э., это не исключает ситуации, когда в неподвижной системе проводников отлична от нуля только плотность тока (и соответствующие магн. и тороидные мультипольные моменты), тогда как плотность электрич. заряда тождественно равна нулю. Создаваемое такой системой электрич. поле Е отлично от нуля, только если токи нестационарны. При движении относительно этой системы наряду с плотностью тока в ней будут наблюдаться плотность заряда и соответствующие электрич. мультипольные моменты; однако не существует системы отсчёта, из к-рой наблюдалась бы одна только плотность заряда и не наблюдалась бы плотность тока, а следовательно, всюду отсутствовало бы магн. поле.

В общем случае, согласно (7), ввиду отсутствия магн. зарядов и независимо от движения электрич. зарядов


т. е. магн. поле выступает как вспомогательное, характеризующее историю эволюции основного электрич. поля. Несмотря на это, введение самостоят. магн. поля необходимо, если последовательно придерживаться идеи близ-кодействия зарядов, т. е. описывать их взаимодействие только посредством локально (а не интегрально) измеримых полевых величин.

Экстремальные принципы . В отличие от дуально симметричной Э. (8), (11), в однозарядовой Э. не возникает проблем с получением совместной системы ур-ний (1), (8) для движения отд. электрич. зарядов q n и поля в вакууме из вариац. принципа (см. Вариационное исчисление ).Для удобства вводятся новые полевые переменные - скалярный j(сt , r ) и векторный A (ct, r ) потенциалы электромагнитного поля:

(13)

Тогда второе ур-ние из (8), принимающее вид F ab, v + F v a,b + +F b v , a = 0, и, следовательно, ур-ния (7) с удовлетворяются тождественно. Первое же ур-ние из (8) и ур-ние (1") с учётом (4") [или ур-ния (6) и ур-ние (1) с учётом (4)] есть в точности Эйлера - Лагранжа уравнения с лагранжианом



При этом, правда, в последнем слагаемом необходимо исключить бесконечную энергию собственного (кулонов-ского) поля точечных зарядов, а в слагаемом взаимодействия A a j a /c -самовоздействие зарядов. Поскольку наблюдаемая масса заряж. частиц т n конечна, компенсацию их бесконечной эл--магн. массы следует обеспечить введением бесконечной отрицат. массы неэлектромагн. происхождения ("перенормировка" массы). Эта непоследовательность, связанная с идеализацией точечных элементарных частиц, в релятивистской классич. физике, не включающей описание детальной внутр. структуры заряж. частиц, напр. как полевых образований, неизбежна в силу невозможности существования абсолютно недеформируемых протяжённых тел.

Калибровочная инвариантность . Если отказаться от то-чечности и учесть неэлектромагн. взаимодействие частиц, то, описывая частицы нек-рым классич. полем y, первое слагаемое в (14) следует заменить на более общий лагранжиан частиц , зависящий от к--л. многокомпонентных комплексных ф-ций yk (x a), k= 1, 2, ... , и их производных y k ,a . С учётом вещественности требование инвариантности полного лагранжиана относительно локальных фазовых преобразований

В результате ур-ния Э. (Г), (8) (без магн. зарядов) суть



(g = det g ab), причём последнее ур-ние не меняет свой вид и удовлетворяется введением прежних потенциалов (13). Вектор 4-тока


или для непрерывного распределения зарядов где [в окрестности мировой линии х n (t )], а плотность зарядов. Ур-ние непрерывности T v b;v =-f b для плотности энергии-импульса эл--магн. поля (12) (и аналогично - зарядов) принимает вид

и содержит, наряду с силой Лоренца f b [ср. (21)], силу тяготения. Последняя имеется также в ур-нии движения зарядов (1""), куда, кроме того, нужно в качестве поправки ввести силу реакции излучения. Она включает дополнительные к (18) слагаемые, связанные с ускоренным движением заряда в гравитац. поле, в т. ч. создаваемом 4-им-пульсом эл--магн. поля - внешнего и собственного.

Поле тяжести как среда . Электрическое Е и магнитное В поля, определяемые компонентами , по-прежнему находятся, согласно (1""), непосредственными измерениями ускорений пробных заряж. частиц, движущихся с определённой скоростью u a n в локально инерциальной (свободно падающей) системе отсчёта, где Г a d v = 0 (см.

Лит.: Ландау Л. Д., Лифшиц Е. М., Теоретическая физика, т. 2, 4, 8, М., 1980-89; Джексон Дж., Классическая электродинамика, пер. с англ., М., 1965; Агранович В. М., Гинзбург В. Л., Кристаллооптика с учетом пространственной дисперсии и теория экситонов, 2 изд., М., 1979; Вейнберг С., Гравитация и космология, пер. с англ., М., 1975; Стражев В. И., Томиль-чик Л. М., Электродинамика с магнитным зарядом, Минск, 1975; Гинзбург В. Л., Теоретическая физика и астрофизика, 3 изд., М., 1987; Гроот С. Р. де, Сатторп Л. Г., Электродинамика, пер. с англ., М., 1982; Туров Е. А., Материальные уравнения электродинамики, М., 1983; Железняков В. В., Кочаровский В. В., Кочаровский Вл. В., Волны поляризации и сверхизлучение в активных средах, "УФН", 1989, т. 159, с. 193.

В. В. Кочаровский, Вл. В. Кочаровский .